精英家教网 > 高中数学 > 题目详情
已知函数y=lg(-x2+4x-3)的定义域为M,求函数f(x)=4x-2x+3+4(x∈M)的值域.
考点:函数的值域,函数的定义域及其求法
专题:函数的性质及应用
分析:先求出M={x|1<x<3},再求出2<2x<8,利用换元法得f(t)=(t-4)2-12,(2<t<8),从而求出函数f(x)=4x-2x+3+4(x∈M)的值域.
解答: 解:∵-x2+4x-3>0,
∴1<x<3,
∴M={x|1<x<3};
∴2<2x<8,
f(x)=4x-2x+3+4
=(2x2-8•2x+4,
令t=2x,∴2<t<8,
∴f(t)=(t-4)2-12,(2<t<8),
∴f(t)min=-12,f(t)max<f(8)=4,
∴函数f(x)=4x-2x+3+4(x∈M)的值域是:[-12,4).
点评:本题考查了对数函数的性质,考查函数的值域问题,考查二次函数的性质,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
1
x1-m
在第二象限内单调递增,则m的最大负整数是(  )
A、-4B、-3C、-2D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+
3
sinxsin(x+
π
2

(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)求函数f(x)在区间[0,
3
]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、DC的中点.
(Ⅰ)求异面直线AE与D1F所成的角;
(Ⅱ)证明:AE⊥平面A1D1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx-lnx(a>0,b∈R).
(Ⅰ)设a=1,b=-1,求f(x)的单调区间;
(Ⅱ)若对任意x>0,f(x)≥f(1).试比较lna与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+bx+c
(1)b=0,c=-1,求f(x)>0的x范围;
(2)若不等式f(x)<0的解集为{x|1<x<3},求f(x)的解析式;
(3)若对于(2)中的f(x),不等式f(x)>mx-1对于x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三个内角A、B、C所对的边分别为a、b、c,且2bcosC=2a-c.
(1)求角B;
(2)若△ABC的面积S=
3
,a+c=4,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x|0<x<8},B={x|1≤x≤10},求:
(1)A∩B;     
(2)A∪B;        
(3)∁RB.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x+3|-|x-1|.
(Ⅰ)解不等式f(x)≤1;
(Ⅱ)若存在x0,使得f(x0)≥log2a成立,求a的取值范围.

查看答案和解析>>

同步练习册答案