【题目】在中,三个内角所对的边分别为,满足.
(1) 求角的大小;
(2) 若,求,的值.(其中)
【答案】(1);(2)4,6
【解析】
(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知与为一个一元二次方程的两个解,求出方程的解,根据大于,可得出,的值.
(1)已知等式,
利用正弦定理化简得,
整理得,
即,
,
则.
(2)由,得, ①
又由(1) ,②
由余弦定理得,
将及①代入得,
,
,③
由②③可知与为一个一元二次方程的两个根,
解此方程,并由大于,可得.
科目:高中数学 来源: 题型:
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了 50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.
(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的列联表,并判断是否有的把握认为“阅读达人”跟性别有关?
附:参考公式
,其中.
临界值表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设E,F分别是正方体ABCD﹣A1B1C1D1的棱DC上两点,且AB=2,EF=1,给出下列四个命题:
①三棱锥D1﹣B1EF的体积为定值;
②异面直线D1B1与EF所成的角为45°;
③D1B1⊥平面B1EF;
④直线D1B1与平面B1EF所成的角为60°.
其中正确的命题为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣alnx+(a+1)x﹣(a>0).
(1)讨论函数f(x)的单调性;
(2)若f(x)≥﹣+ax+b恒成立,求a时,实数b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知菱形,在轴上且, (,).
(Ⅰ)求点轨迹的方程;
(Ⅱ)延长交轨迹于点,轨迹在点处的切线与直线交于点,试判断以为圆心,线段为半径的圆与直线的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额(亿元)与该地区粮食产量(万亿吨)之间存在着线性相关关系.统计数据如下表:
年份 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 |
补贴额亿元 | 9 | 10 | 12 | 11 | 8 |
粮食产量万亿吨 | 23 | 25 | 30 | 26 | 21 |
(1)请根据如表所给的数据,求出关于的线性回归直线方程;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等腰梯形ABCD(如图1所示),其中AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点.现将梯形ABCD沿着EF所在直线折起,使平面EFCB⊥平面EFDA(如图2所示),N是线段CD上一动点,且.
(1)求证:MN∥平面EFDA;
(2)求三棱锥A-MNF的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com