精英家教网 > 高中数学 > 题目详情

【题目】中,三个内角所对的边分别为,满足.

(1) 求角的大小;

(2),求的值.(其中

【答案】(1);(2)4,6

【解析】

(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知为一个一元二次方程的两个解,求出方程的解,根据大于,可得出的值.

(1)已知等式

利用正弦定理化简得

整理得

.

2)由,得

又由(1) ,②

由余弦定理得

及①代入得

,③

由②③可知为一个一元二次方程的两个根,

解此方程,并由大于,可得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解学生的课外阅读时间情况,某学校随机抽取了 50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.

(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);

(2)根据已知条件完成下面的列联表,并判断是否有的把握认为“阅读达人”跟性别有关?

附:参考公式

,其中.

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】EF分别是正方体ABCDA1B1C1D1的棱DC上两点,且AB=2,EF=1,给出下列四个命题:

三棱锥D1B1EF的体积为定值;

异面直线D1B1EF所成的角为45°;

D1B1⊥平面B1EF

直线D1B1与平面B1EF所成的角为60°.

其中正确的命题为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣alnx+(a+1)x﹣(a>0).

(1)讨论函数f(x)的单调性;

(2)若f(x)≥﹣+ax+b恒成立,求a时,实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形轴上且 ).

Ⅰ)求点轨迹的方程;

Ⅱ)延长交轨迹于点,轨迹在点处的切线与直线交于点,试判断以为圆心,线段为半径的圆与直线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额(亿元)与该地区粮食产量(万亿吨)之间存在着线性相关关系.统计数据如下表:

年份

2014年

2015年

2016年

2017年

2018年

补贴额亿元

9

10

12

11

8

粮食产量万亿吨

23

25

30

26

21

(1)请根据如表所给的数据,求出关于的线性回归直线方程

(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数在点处的切线方程;

(2)求函数的单调区间;

(3) 求证:当时,恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰梯形ABCD(如图1所示),其中ABCDEF分别为ABCD的中点,且ABEF=2,CD=6,MBC中点.现将梯形ABCD沿着EF所在直线折起,使平面EFCB⊥平面EFDA(如图2所示),N是线段CD上一动点,且.

(1)求证:MN∥平面EFDA

(2)求三棱锥AMNF的体积.

查看答案和解析>>

同步练习册答案