精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex,(a为实数)
(1)当a=5时,求函数y=g(x)在点(1,g(1))处的切线方程;
(2)若存在不等实根x1,x2∈[$\frac{1}{e}$,e],使方程g(x)=2exf(x)成立,求实数a的取值范围.

分析 (1)把a=5代入函数g(x)的解析式,求出导数,得到g(1)和g′(1),由直线方程的点斜式得切线方程;
(2)把f(x)和g(x)的解析式代入g(x)=2exf(x),分离变量a,然后构造函数h(x)=x+2lnx+$\frac{3}{x}$,由导数求出其在[$\frac{1}{e}$,e]上的最大值和最小值,则实数a的取值范围可求.

解答 解:(1)当a=5时,g(x)=(-x2+5x-3)-ex,g(1)=e.
g′(x)=(-x2+3x+2)-ex,故切线的斜率为g′(1)=4e,
则切线方程为:y-e=4e(x-1),即y=4ex-3e;
(2)由g(x)=2exf(x),可得:2xlnx=-x2+ax-3,
a=x+2lnx+$\frac{3}{x}$,
令h(x)=x+2lnx+$\frac{3}{x}$,h′(x)=1+$\frac{2}{x}$-$\frac{3}{{x}^{2}}$=$\frac{(x+3)(x-1)}{{x}^{2}}$.

x($\frac{1}{e}$,1)1(1,e)
h′(x)-0+
h(x)单调递减极小值(最小值)单调递增
h($\frac{1}{e}$)=$\frac{1}{e}$+3e-2,h(1)=4,h(e)=$\frac{3}{e}$+e+2.
h(e)-h($\frac{1}{e}$)=4-2e+$\frac{2}{e}$<0.
则使方程g(x)=2exf(x)存在两不等实根的实数a的取值范围为4<a≤e+2+$\frac{3}{e}$.

点评 本题考查了导数在求函数最值中的应用,关键在于由导函数的符号确定原函数的单调性,考查利用构造函数法求解含字母系数的范围问题,解答的技巧是分离字母系数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)=ex-x的单调减区间是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁UA)∩B=∅,求实数m的取值范围.
互助探究:本题中将条件“(∁UB)∩A=R”,其他条件不变,则m的取值范围又是什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a>0,f(x)=$\frac{{e}^{x}}{a}$-$\frac{a}{{e}^{x}}$是R上的奇函数.
(1)求a的值;
(2)证明:y=f(x)-2x在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.各项均为正数的数列{an},a1=a,a2=b,且对满足m+n=p+q的正整数m,n,p,q都有$\frac{{a}_{m}+{a}_{n}}{(1+{a}_{m})(1+{a}_{n})}$=$\frac{{a}_{p}+{a}_{q}}{(1+{a}_{p})(1+{a}_{q})}$.
(Ⅰ)当a=$\frac{1}{2}$,b=$\frac{4}{5}$时,求证:数列{$\frac{{1-{a_n}}}{{1+{a_n}}}$}是等比数列,并求通项an;  
(Ⅱ)证明:对任意a,存在与a有关的常数λ,使得对于每个正整数n,都有$\frac{1}{λ}$≤an≤λ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设等差数列{an}的前n项和为Sn,若a6=S3=12,则a8=(  )
A.16B.14C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x>a+5或x<a},B={x|2≤x≤4},若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=3x-1,g(x)=2x+3,求f[g(x)],g[f(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“若x≠3且x≠4,则x2-7x+12≠0”的逆否命题是若x2-7x+12=0,则x=3或x=4真假性真.

查看答案和解析>>

同步练习册答案