分析 (1)把a=5代入函数g(x)的解析式,求出导数,得到g(1)和g′(1),由直线方程的点斜式得切线方程;
(2)把f(x)和g(x)的解析式代入g(x)=2exf(x),分离变量a,然后构造函数h(x)=x+2lnx+$\frac{3}{x}$,由导数求出其在[$\frac{1}{e}$,e]上的最大值和最小值,则实数a的取值范围可求.
解答 解:(1)当a=5时,g(x)=(-x2+5x-3)-ex,g(1)=e.
g′(x)=(-x2+3x+2)-ex,故切线的斜率为g′(1)=4e,
则切线方程为:y-e=4e(x-1),即y=4ex-3e;
(2)由g(x)=2exf(x),可得:2xlnx=-x2+ax-3,
a=x+2lnx+$\frac{3}{x}$,
令h(x)=x+2lnx+$\frac{3}{x}$,h′(x)=1+$\frac{2}{x}$-$\frac{3}{{x}^{2}}$=$\frac{(x+3)(x-1)}{{x}^{2}}$.
| x | ($\frac{1}{e}$,1) | 1 | (1,e) |
| h′(x) | - | 0 | + |
| h(x) | 单调递减 | 极小值(最小值) | 单调递增 |
点评 本题考查了导数在求函数最值中的应用,关键在于由导函数的符号确定原函数的单调性,考查利用构造函数法求解含字母系数的范围问题,解答的技巧是分离字母系数.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com