精英家教网 > 高中数学 > 题目详情
4.命题“若x≠3且x≠4,则x2-7x+12≠0”的逆否命题是若x2-7x+12=0,则x=3或x=4真假性真.

分析 根据逆否命题的定义进行求解判断即可.

解答 解:由逆否命题的定义得命题的逆否命题为:若x2-7x+12=0,则x=3或x=4,
则命题为真命题,
故答案为:若x2-7x+12=0,则x=3或x=4,真.

点评 本题主要考查四种命题之间的关系,根据逆否命题的定义是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex,(a为实数)
(1)当a=5时,求函数y=g(x)在点(1,g(1))处的切线方程;
(2)若存在不等实根x1,x2∈[$\frac{1}{e}$,e],使方程g(x)=2exf(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设x,y,z是非零实数,若a=$\frac{x}{|x|}$+$\frac{y}{|y|}$+$\frac{z}{|z|}$+$\frac{xyz}{|xyz|}$,则以a的值为元素的集合中元素的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算:$\underset{lim}{x→0}$$\frac{tanx-sinx}{{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=$\frac{lnx}{x}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.“$\left\{\begin{array}{l}{0<x+y<3}\\{0<xy<2}\end{array}\right.$”是“$\left\{\begin{array}{l}{0<x<1}\\{0<y<2}\end{array}\right.$”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于两个非空集合P、Q,定义P⊙Q=$\left\{\begin{array}{l}{\{x|x=a×b,a,b∈P∪Q\},P∩Q=∅}\\{\{x|x=a×b,a∈P∩Q,b∈P∪Q\},P∩Q≠∅}\end{array}\right.$,若集合M={-1,2,3,4},N={-1,1,2},则M⊙N中元素的个数为(  )
A.5B.7C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知AB=AC,BC=6,点P在边BC上,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为[$-\frac{9}{4}$,18].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的首项为2,数列{bn}为等比数列且bn=$\frac{{{a_{n+1}}}}{a_n}$,若b11•b12=2,则a23=4096.

查看答案和解析>>

同步练习册答案