精英家教网 > 高中数学 > 题目详情
12.计算:$\underset{lim}{x→0}$$\frac{tanx-sinx}{{x}^{3}}$.

分析 由$\frac{tanx-sinx}{{x}^{3}}$=$\frac{tanx(1-cosx)}{{x}^{3}}$,根据等价无穷小代换,tanx~x,1-cosx~$\frac{1}{2}{x}^{2}$,代入即可求得$\underset{lim}{x→0}$$\frac{tanx-sinx}{{x}^{3}}$的值.

解答 解:$\underset{lim}{x→0}$$\frac{tanx-sinx}{{x}^{3}}$,
=$\underset{lim}{x→0}$$\frac{tanx(1-cosx)}{{x}^{3}}$,
=$\underset{lim}{x→0}$$\frac{x•\frac{1}{2}{x}^{2}}{{x}^{3}}$,
=$\frac{1}{2}$.

点评 本题考查函数的极限,考查极限的运算,等价无穷小代换,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设a>0,f(x)=$\frac{{e}^{x}}{a}$-$\frac{a}{{e}^{x}}$是R上的奇函数.
(1)求a的值;
(2)证明:y=f(x)-2x在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=3x-1,g(x)=2x+3,求f[g(x)],g[f(x)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足方程x2+y2=3,求$\frac{y+1}{x+3}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)的图象既关于点(0,0)对称,又关于直线x=1对称.
(1)试证明函数f(x)是周期函数;
(2)若当x∈(0,1]时f(x)=x,求函数f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,圆台OO1的上底面半径为6cm,下底面半径为12cm,高为3$\sqrt{5}$cm.A、B在下底面圆周上,∠AOB=135°,M是母线B1B上一点,且BM:MB1=2:1,求圆台侧面上A、M两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“若x≠3且x≠4,则x2-7x+12≠0”的逆否命题是若x2-7x+12=0,则x=3或x=4真假性真.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,一个圆柱形乒乓球筒,高为40厘米,底面半径为4厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,平面PAD⊥平面ABCD,ABCD是正方形,∠PAD=90°,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求异面直线EG、BD所成角的余弦值.
(2)求三棱椎E-FGC的体积.

查看答案和解析>>

同步练习册答案