精英家教网 > 高中数学 > 题目详情
19.求函数f(x)=$\frac{lnx}{x}$的单调区间.

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.

解答 解:f(x)的定义域是(0,+∞),
f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)>0,解得:0<x<e,
令f′(x)<0,解得:x>e,
∴f(x)在(0,e)递增,在(e,+∞)递减.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.各项均为正数的数列{an},a1=a,a2=b,且对满足m+n=p+q的正整数m,n,p,q都有$\frac{{a}_{m}+{a}_{n}}{(1+{a}_{m})(1+{a}_{n})}$=$\frac{{a}_{p}+{a}_{q}}{(1+{a}_{p})(1+{a}_{q})}$.
(Ⅰ)当a=$\frac{1}{2}$,b=$\frac{4}{5}$时,求证:数列{$\frac{{1-{a_n}}}{{1+{a_n}}}$}是等比数列,并求通项an;  
(Ⅱ)证明:对任意a,存在与a有关的常数λ,使得对于每个正整数n,都有$\frac{1}{λ}$≤an≤λ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)为R上的奇函数,g(x)为R上的偶函数,且f(x)、g(x)不恒为零,对于以下判断:①f(x)+g(x)为奇函数;②f(x)-g(x)为奇函数;③f(x)•g(x)为奇函数;④$\frac{f(x)}{g(x)}$为奇函数.其中判断正确的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)的图象既关于点(0,0)对称,又关于直线x=1对称.
(1)试证明函数f(x)是周期函数;
(2)若当x∈(0,1]时f(x)=x,求函数f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且f(x+1)+x-2=x2-3;
(1)求f(x)的解析式;
(2)方程f(x)-k=0的两个实根x1,x2满足x${\;}_{1}^{2}$+x${\;}_{2}^{2}$=45,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“若x≠3且x≠4,则x2-7x+12≠0”的逆否命题是若x2-7x+12=0,则x=3或x=4真假性真.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x2-2ax+9在区间[2,6]内有2个零点,则a的范围为$(3,\frac{13}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若方程x2-2ex+m-$\frac{lnx}{x}$=0有解,则m的取值范围为(-∞,e2+$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等比数列{an}的公比为2,前n项和为Sn,且S1,S2,S3-2成等差数列,则a4=(  )
A.8B.$\frac{1}{8}$C.16D.$\frac{1}{16}$

查看答案和解析>>

同步练习册答案