精英家教网 > 高中数学 > 题目详情
7.点F是抛物线C:y2=2px(p>0)的焦点,l是准线,A是抛物线在第一象限内的点,直线AF的倾斜角为60°,AB⊥l于B,△ABF的面积为$\sqrt{3}$,则p的值为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{3}$D.3

分析 利用条件,结合抛物线的定义,建立方程,即可得出结论.

解答 解:设A(x,y),则
∵直线AF的倾斜角为60°,
∴y=$\sqrt{3}$(x-$\frac{p}{2}$)①,
∴△ABF的面积为$\sqrt{3}$,
∴$\frac{1}{2}•(x+\frac{p}{2})•y$=$\sqrt{3}$②,
∵A是抛物线在第一象限内的点,
∴y2=2px③,
∴由①②③可得p=1,x=$\frac{3}{2}$,y=$\sqrt{3}$.
故选:B.

点评 本题考查抛物线的方程与性质,考查学生的计算能力,正确建立方程组是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知x∈R,y为纯虚数,若(x-y)i=2-i,则x+y等于(  )
A.1B.-1-2iC.-1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.从4,5,6这三个数中,任选2个数组成集合,写出全体基本事件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是(  )
A.$\frac{4}{21}$B.$\frac{1}{21}$C.$\frac{1}{14}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x-$\frac{π}{2}$),则下列结论中正确的是(  )
A.函数y=f(x)•g(x)的最小正周期为2π
B.函数y=f(x)•g(x)的最大值为1
C.函数y=f(x)•g(x)的一个单调递增区间为(-$\frac{π}{4}$,$\frac{π}{4}}$)
D.f(x)与g(x)的奇偶性相同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左顶点为(-2,0),离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知直线l过点S(4,0),与椭圆C交于P,Q两点,点P关于x轴的对称点为P′,P′与Q两点的连线交x轴于点T,当△PQT的面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex+ax2+bx(e为自然对数的底,a,b为常数),曲线y=f(x)在x=0处的切线经过点A(-1,-1)
(Ⅰ)求实数b的值;
(Ⅱ)是否存在实数a,使得曲线y=f(x)所有切线的斜率都不小于2?若存在,求实数a的取值集合,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点(0,$\sqrt{2}$),且满足a+b=3$\sqrt{2}$.
(1)求椭圆C的方程;
(2)若斜率为$\frac{1}{2}$的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某晚会有2个歌唱节目和5个舞蹈节目依次表演,分别按照下列要求,可以排多少种节自单?(用数字作答)
(1)2个唱歌节目连续表演,5个舞蹈也连续表演;
(2)歌唱节目A不能在第一个,歌唱节目B也不能在最后一个表演;
(3)歌唱节目A,B之间至少安排3个舞蹈节目.

查看答案和解析>>

同步练习册答案