ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãSn=2an-n£¬n¡ÊN*£®
£¨¢ñ£©Ö¤Ã÷£ºÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©¶ÔÓÚ£¨¢ò£©ÖÐÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}Âú×ãbn=log2£¨an+1£©£¨n¡ÊN*£©£¬ÔÚbkÓëbk+1Ö®¼ä²åÈë2k-1£¨k¡ÊN*£©¸ö2£¬µÃµ½Ò»¸öеÄÊýÁÐ{cn}£¬ÊÔÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊým£¬Ê¹µÃÊýÁÐ{cn}µÄǰmÏîµÄºÍTm=2013£¿Èç¹û´æÔÚ£¬Çó³ömµÄÖµ£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÊýÁеÝÍÆÊ½
רÌ⣺µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨¢ñ£©ÔÚÊýÁеÝÍÆÊ½ÖÐÈ¡n=n+1µÃµ½ÁíÒ»µÝÍÆÊ½£¬×÷²îºó±äÐεõ½
an+1+1
an+1
=2
£¬¼´ËµÃ÷ÊýÁÐ{an+1}ΪµÈ±ÈÊýÁУ»
£¨¢ò£©Ö±½ÓÓÉÊýÁÐ{an+1}ΪµÈ±ÈÊýÁÐд³öÆäͨÏʽ£¬Ôò¿ÉµÃµ½ÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©°ÑÊýÁÐ{an}µÄͨÏʽ´úÈëbn=log2£¨an+1£©£¬µÃµ½ÊýÁÐ{bn}µÄͨÏʽ£¬ÓÉÌâÒâÇóµÃÊýÁÐ{cn}ÖУ¬bk£¨º¬bkÏǰµÄËùÓÐÏîµÄºÍ£¬È»ºóÇó³öʹµÃÊýÁÐ{cn}µÄǰmÏîµÄºÍTm=2013µÄmÖµ£®
½â´ð£º £¨¢ñ£©Ö¤Ã÷£ºÓÉSn=2an-n£¬µÃSn+1=2an+1-£¨n+1£©£¬
¡àan+1=2an+1-2an-1£¬an+1=2an+1£¬
Ôòan+1+1=2£¨an+1£©£¬
¡à
an+1+1
an+1
=2
£®
ÓÖµ±n=1ʱ£¬S1=2a1-1£¬µÃa1=1£¬a1+1=2£®
¡àÊýÁÐ{an+1}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ»
£¨¢ò£©½â£ºÓÉ£¨¢ñ£©µÃan+1=£¨a1+1£©2n-1=2n£¬¹Êan=2n-1£®
£¨¢ó£©½â£ºÓÉ£¨¢ò£©µÃbn=log22n£¬¼´bn=n£¨n¡ÊN*£©£®
ÊýÁÐ{cn}ÖУ¬bk£¨º¬bkÏǰµÄËùÓÐÏîµÄºÍÊÇ£º
£¨1+2+3+¡­+k£©+£¨20+21+22+¡­+2k-2£©2=
k(k+1)
2
+2k-2£®
µ±k=10ʱ£¬ÆäºÍÊÇ55+210-2=1077£¼2013£®
µ±k=11ʱ£¬ÆäºÍÊÇ66+211-2=2112£¾2013£®
ÓÖ¡ß2013-1077=936=468¡Á2£¬ÊÇ2µÄ±¶Êý£¬
¡àµ±m=10+£¨1+2+22+¡­+28£©+468=989ʱ£¬Tm=2013£®
¡à´æÔÚm=989£¬Ê¹µÃTm=2013£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȱȹØÏµµÄÈ·¶¨£¬¶ÔÓÚ£¨¢ó£©µÄÀí½âÊǽâ´ð´ËÌâµÄ¹Ø¼ü£¬ÊôÖиߵµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªlog2a+log2b¡Ý1£¬Ôò3a+9bµÄ×îСֵΪ£¨¡¡¡¡£©
A¡¢6B¡¢9C¡¢16D¡¢18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè¹ØÓÚxµÄ²»µÈʽ|x-1|¡Üa-x£®
£¨1£©Èôa=2£¬½âÉÏÊö²»µÈʽ£»
£¨2£©ÈôÉÏÊöµÄ²»µÈʽÓн⣬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÁ½µãA£¨0£¬
3
£©£¬B£¨0£¬-
3
£©£®ÇúÏßGÉϵ͝µãP£¨x£¬y£©Ê¹µÃÖ±ÏßPA¡¢PBµÄбÂÊÖ®»ýΪ3£®
£¨¢ñ£©ÇóGµÄ·½³Ì£»
£¨¢ò£©¹ýµãC£¨0£¬-1£©µÄÖ±ÏßÓëGÏཻÓÚE¡¢FÁ½µã£¬ÇÒ
CE
=2
CF
£¬ÇóÖ±ÏßEFµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÖ¶ÔijÊй¤Ð½½×²ã¹ØÓÚ¡°Â¥ÊÐÏÞ¹ºÁµÄ̬¶È½øÐе÷²é£¬Ëæ»ú³éµ÷ÁË50ÈË£¬ËûÃÇÔÂÊÕÈëµÄƵÊý·Ö²¼¼°¶Ô¡°Â¥ÊÐÏÞ¹ºÁÔÞ³ÉÈËÊýÈç±í£®
ÔÂÊÕÈ루µ¥Î»°ÙÔª£©[15£¬25£©[25£¬35£©[35£¬45£©[45£¬55£©[55£¬65£©[65£¬75£©
ƵÊý510151055
ÔÞ³ÉÈËÊý4812521
£¨1£©ÓÉÒÔÉÏͳ¼ÆÊý¾ÝÇóÏÂÃæ2³Ë2ÁÐÁª±íÖеÄa£¬b£¬c£¬dµÄÖµ£¬²¢ÎÊÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¡°ÔÂÊÕÈëÒÔ5500Ϊ·Ö½çµã¶Ô¡°Â¥ÊÐÏÞ¹ºÁµÄ̬¶ÈÓвîÒ죻
ÔÂÊÕÈëµÍÓÚ55°ÙÔªµÄÈËÊýÔÂÊÕÈë²»µÍÓÚ55°ÙÔªµÄÈËÊýºÏ¼Æ
ÔÞ³Éa      b
²»Ô޳ɠ      c      d
ºÏ¼Æ 50
£¨2£©Èô¶ÔÔÚ[55£¬65£©Äڵı»µ÷²éÕßÖÐËæ»úѡȡÁ½È˽øÐÐ×·×Ùµ÷²é£¬¼ÇÑ¡ÖеÄ2ÈËÖв»Ô޳ɡ°Â¥ÊÐÏÞ¹ºÁµÄÈËÊýΪx£¬Çóx=1µÄ¸ÅÂÊ£®
¸½£ºK2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
  n=a+b+c+d
p£¨K2¡Ýk£©0.100.050.0250.0100.001
k2.7063.8415.0246.63510.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèAÊÇÅ×ÎïÏßy=ax2£¨a£¾0£©×¼ÏßÉÏÈÎÒâÒ»µã£¬¹ýAµã×÷Å×ÎïÏßµÄÇÐÏßl1£¬l2£¬ÇеãΪP£¬Q£®
£¨1£©Ö¤Ã÷£ºÖ±ÏßPQ¹ý¶¨µã£»
£¨2£©ÉèPQÖеãΪM£¬Çó|AM|×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

i+i2+¡­+i2013=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èôa1=3£¬SnºÍ{an}Âú×ãµÈʽSn+1=
n+1
n
Sn+n+1£¬
£¨1£©ÇóS2µÄÖµ£»
£¨2£©ÇóÖ¤£ºÊýÁÐ{
Sn
n
}ÊǵȲîÊýÁУ»
£¨3£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªp£ºx2-x-2¡Ü0£¬q£º|2x+m|£¾|x-m|£¬ÆäÖÐm£¼0
£¨1£©Èô©VpÎªÕæ£¬ÇóxµÄȡֵ·¶Î§£»
£¨2£©ÈôÊÇ©VpÊÇqµÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸