分析 利用逆向思维寻求应有的结论,注意结合函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:对函数y=2sinx的图象作相反的变换,利用逆向思维寻求应有的结论.
把y=2sinx的图象沿x轴向右平移$\frac{π}{3}$个单位,得到解析式y=2sin(x-$\frac{π}{3}$)的图象,
再使它的图象上各点的纵坐标不变,横坐标缩小到原来的$\frac{1}{2}$倍,
就得到解析式f(x)=2sin(2x-$\frac{π}{3}$)的图象,
图象上的每一点的纵坐标缩小到原来的$\frac{1}{4}$倍,得到函数 f(x)=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
故答案是:$f(x)=\frac{1}{2}sin(2x-\frac{π}{3})$.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,注意逆向思维的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | -4$\sqrt{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | -$\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2)∪(-2,-$\frac{3}{2}$] | B. | (-∞,-2)∪(-2,-$\frac{3}{2}$] | C. | (-∞,-2) | D. | (-2,-$\frac{3}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com