精英家教网 > 高中数学 > 题目详情
3.对于命题p:?x∈R,使得x2+x+1<0,则?p为:?x∈R,使得x2+x+1≥0.

分析 直接利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题p:?x∈R,使得x2+x+1<0,则?p为:?x∈R,使得x2+x+1≥0.
故答案为:?x∈R,使得x2+x+1≥0.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)={2^x}-\frac{1}{{{2^{|x|}}}}$.若f(x)=2,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆A:x2+(y+1)2=1,圆B:(x-4)2+(y-3)2=1.
(1)过A的直线L截圆B所得的弦长为$\frac{6}{5}$,求该直线L的斜率;
(2)动圆P同时平分圆A与圆B的周长;
①求动圆圆心P的轨迹方程;
②问动圆P是否过定点,若经过,则求定点坐标;若不经过,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张正建算经》卷上第22题为“今有女善织,日益功疾”(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织585尺”,则第1天起每天比前一天多织10尺布.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线x-y+1=0与抛物线f(x)=x2+ax+b相切于点(1,f(1)),则a-b的值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=$\frac{5}{4}|PQ|$
(1)求C的方程     
(2)过F的直线l与C相交于A,B两点,计算$\frac{1}{|AF|}+\frac{1}{|BF|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在复平面内,复数z=i(2-3i)对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数y=f(x)的图象上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图象沿x轴向左平移$\frac{π}{3}$,这样得到的曲线和y=2sinx的图象相同,则已知函数y=f(x)的解析式为$f(x)=\frac{1}{2}sin(2x-\frac{π}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2-3t}\\{y=2-4t}\end{array}\right.$(t为参数),它与曲线C:(y-2)2-x2=1交于A,B两点,则|AB|=$\frac{10\sqrt{71}}{7}$.

查看答案和解析>>

同步练习册答案