精英家教网 > 高中数学 > 题目详情
2.已知f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,
(1)若a=1,b=-1,求f(x)的最大值和最小值;
(2)当x∈[$\frac{π}{4}$,$\frac{3π}{4}$]时,是否存在常数a,b∈Q,使得f(x)的值域为[-3,$\sqrt{3}$-1]?若存在,求出a,b的值;若不存在,说明理由.

分析 (1)a=1,b=-1,f(x)=-2sin(2x+$\frac{π}{6}$)+1,即可求f(x)的最大值和最小值;
(2)根据函数的定义域,得-1≤sin(2x+$\frac{π}{6}$)≤$\frac{\sqrt{3}}{2}$然后分a的正负进行讨论,建立关于a、b的方程组,解之可得存在a=-1,b=1,符合题意

解答 解:(1)a=1,b=-1,f(x)=-2sin(2x+$\frac{π}{6}$)+1.
∴f(x)的最大值为3,最小值-1;
(2)存在a=-1,b=1满足要求.
∵x∈[$\frac{π}{4}$,$\frac{3π}{4}$],
∴$\frac{2π}{3}$≤2x+$\frac{π}{6}$≤$\frac{5π}{3}$,
∴-1≤sin(2x+$\frac{π}{6}$)≤$\frac{\sqrt{3}}{2}$,
若存在这样的有理a,b,则
(1)当a>0时,$\left\{\begin{array}{l}{-\sqrt{3}a+2a+b=-3}\\{2a+2a+b=\sqrt{3}-1}\end{array}\right.$无解.
(2)当a<0时,$\left\{\begin{array}{l}{2a+2a+b=-3}\\{-\sqrt{3}a+2a+b=\sqrt{3}-1}\end{array}\right.$,解得a=-1,b=1,
即存在a=-1,b=1满足要求.

点评 本题给出三角函数表达式,讨论使得函数值域为已知区间的参数取值范围.着重考查了三角函数的图象与性质、三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(Ⅰ)若直线MN的斜率为$\frac{3}{4}$,求C的离心率;
(Ⅱ)若点M到F1、F2的距离之和为4,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3-ax2+4有两个正零点,则实数a的取值范围是(  )
A.a>1B.a>$\frac{3}{2}$C.a>2D.a>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,则$\overrightarrow b=\overrightarrow c$B.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|$,则$\overrightarrow a•\overrightarrow b=0$
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$D.若$\overrightarrow a$与$\overrightarrow b$是单位向量,则$\overrightarrow a•\overrightarrow b=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\left\{\begin{array}{l}{x^2}+2x+2\\-{x^2}\end{array}\right.\begin{array}{l},{x≤0}\\,{x>0}\end{array}$若实数a满足f(f(a))=2,则实数a的所有取值的和为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.椭圆C的中心在原点O,焦点在x轴上,离心率等于$\frac{{\sqrt{3}}}{2}$,且双曲线$\frac{x^2}{3}-{y^2}=1$的焦点恰好是椭圆C的两个顶点
(1)求椭圆C的方程.
(2)若点P是第一象限内该椭圆上的一点,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=-$\frac{5}{4}$,求点P的坐标;
(3)设过定点M(0,2)的直线l与椭圆交于不同的两个点A,B,且∠AOB为锐角(其中O为原点),求直线l斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知命题p:x2-(2a+4)x+a2+4a<0,命题q:(x-2)(x-3)<0,若¬p是¬q的充分不必要条件,则a的取值范围为[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知正方体ABCD-A1B1C1D1的棱长为a,M,N分别是棱AA1,CC1的中点,
(Ⅰ)求正方体ABCD-A1B1C1D1的内切球的半径与外接球的半径之比;
(Ⅱ)求四棱锥A-MB1ND的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等差数列{an}中,a2=4,a1+a5=14,
(1)求数列{an}的通项公式an
(2)求数列{an}的前n项和.

查看答案和解析>>

同步练习册答案