精英家教网 > 高中数学 > 题目详情
10.设直线l:kx-y+1=0与圆C:x2+y2=4相较于A、B两点,$\overrightarrow{OM}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,且点M在圆C上,则实数k等于(  )
A.1B.2C.-1D.0

分析 由已知得四边形OAMB为菱形,弦AB的长为2$\sqrt{3}$,又直线过定点N(0,1),且过N的弦的弦长最小值为2$\sqrt{3}$,由此能求出结果.

解答 解:由题意可得,四边形OAMB为平行四边形,∴四边形OAMB为菱形,
∴△OAM为等边三角形,且边长为2,
解得弦AB的长为2$\sqrt{3}$,又直线过定点N(0,1),
且过N的弦的弦长最小值为2$\sqrt{3}$,
此时此弦平行x轴,即k=0,
故选:D.

点评 本题考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,k),且$\overrightarrow{a}$$⊥(2\overrightarrow{a}-\overrightarrow{b})$,则|$\overrightarrow{b}$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,a1=2,且a3+a5=40,则{an}的公比q=(  )
A.±5B.±4C.$±\sqrt{5}$D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.i为虚数单位,则${({\frac{1+i}{1-i}})^7}$=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC中,内角A,B,C的对边分别为a,b,c,且cos2A=3cos(B+C)+1.
(Ⅰ)求角A的大小;
(Ⅱ)若cosBcosC=-$\frac{1}{8}$,且△ABC的面积为2$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:设a,b∈R,则“a+b>4”是“a>2且b>2”的必要不充分条件;
命题q:“?x0∈R,使得x02-x0>0”的否定是:“?x∈R,均有x2-x<0”;
在命题①p∧q;②(?p)∨(?q);③p∨(?q); ④(?p)∨q中,真命题的序号是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心为坐标原点,离心率e=$\frac{\sqrt{6}}{3}$,A1,A2,B1,B2是其四个顶点,且四边形A1B1A2B2的面积为4$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过椭圆C的右焦点F且与椭圆C相交于M,N两点的直线l,使得在直线x=3上可以找到一点B,满足△MNB为正三角形?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在如图所示的程序框图中,若输出的S值等于16,则在该程序框图中的判断框内填写的条件为(  )
A.i>5B.i>6C.i>7D.i>8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校乒乓球队男运动员10名和女运动员9名,若要选出男、女运动员各3名参加三场混合双打比赛(每名运动员只限参加一场比赛),共有多少种参赛方法?

查看答案和解析>>

同步练习册答案