精英家教网 > 高中数学 > 题目详情

【题目】如图,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,FD⊥底面ABCD,M是AB的中点.

(1)求证:平面CFM⊥平面BDF;
(2)若点N为线段CE的中点,EC=2,FD=3,求证:MN∥平面BEF.

【答案】
(1)

证明:直角梯形ABCD中,AB∥CD,BC=2,AB=4,且M是AB的中点,

∴BM=CD,∴四边形BCDM是平行四边形,

又BC=CD=2,∴平行四边形BCDM是菱形;

∴BD⊥CM,

又FD⊥底面ABCD,CM平面BCDM,∴FD⊥CM,

且FD∩BD=D,

∴CM⊥平面BDF,

有CM平面CFM,

∴平面CFM⊥平面BDF;


(2)

过点N作NP∥EF,交DF与点P,连接PM,如图所示;

∵EC∥FD,∴四边形EFPN是平行四边形,

又点N为线段CE的中点,EC=2,FD=3,

∴FP= EC=1,

PD=EC=2,

∴PE∥CD,且PE=CD,

又BM∥CD,且BM=CD,

∴BM∥PE,且PE=BM,

∴四边形BEPM为平行四边形,

∴PM∥BE;

又PM平面BEF,BE平面BEF,∴PM∥平面BEF;

同理,PM∥平面BEF,

又PM∩PN=P,PM平面PMN,PN平面PMN,

∴平面PMN∥平面BEF,

又MN平面PMN,∴MN∥平面BEF.


【解析】(1)证明四边形BCDM是菱形,对角线BD⊥CM,再证明FD⊥CM,即可证明CM⊥平面BDF,从而得平面CFM⊥平面BDF;(2)过点N作NP∥EF,交DF与点P,连接PM,证明平面PMN∥平面BEF,即可证明MN∥平面BEF.
【考点精析】认真审题,首先需要了解直线与平面平行的判定(平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行),还要掌握平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每年每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按1小时计算).现有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为 ;两小时以上且不超过三小时还车的概率为 ;两人租车时间都不会超过四小时.

(1)求甲、乙都在三到四小时内还车的概率和甲、乙两人所付租车费相同的概率;

(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线 为参数)和直线 为参数).

(1)将曲线的方程化为普通方程;

(2)设直线与曲线交于两点,且为弦的中点,求弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络营销部门为了统计某市网友20151111日在某网店的网购情况,随机抽查了该市100名网友的网购金额情况,得到如下频率分布直方图.

1)估计直方图中网购金额的中位数;

2)若规定网购金额超过15千元的顾客定义为网购达人,网购金额不超过15千元的顾客定义为非网购达人;若以该网店的频率估计全市非网购达人网购达人的概率,从全市任意选取3人,则3人中非网购达人网购达人的人数之差的绝对值为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)

某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.学#@

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+1)= ,且f(x)在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则(
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (Ⅰ)当 时,求函数f(x)的值域;
(Ⅱ)若函数f(x)是(﹣∞,+∞)上的减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=loga(ax+1)+mx是偶函数.
(1)求m;
(2)当a>1时,若函数f(x)的图像与直线l:y=﹣mx+n无公共点,求n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为,右焦点为,点是椭圆上异于左、右顶点的一点.

(1)求椭圆的方程;

(2)若直线与直线交于点,线段的中点为,证明:点关于直线的对称点在直线上.

查看答案和解析>>

同步练习册答案