精英家教网 > 高中数学 > 题目详情
18.在△ABC中,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=3,∠A=120°,D为BC边的中点,则|$\overrightarrow{AD}$|=$\frac{\sqrt{13}}{2}$.

分析 根据题意,由向量的加法可得$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),进而由向量的运算公式|$\overrightarrow{AD}$|2=$\overrightarrow{AD}$2=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)2=$\frac{1}{4}$[$\overrightarrow{AB}$2+$\overrightarrow{AC}$2+2$\overrightarrow{AB}$•$\overrightarrow{AC}$],代入数据计算可得答案.

解答 解:根据题意,在△ABC中,D为BC边的中点,则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
又由|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=3,∠A=120°,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|×|$\overrightarrow{AC}$|×cos∠A=-6,
则|$\overrightarrow{AD}$|2=$\overrightarrow{AD}$2=$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)2=$\frac{1}{4}$[$\overrightarrow{AB}$2+$\overrightarrow{AC}$2+2$\overrightarrow{AB}$•$\overrightarrow{AC}$]=$\frac{13}{4}$,
故|$\overrightarrow{AD}$|=$\frac{\sqrt{13}}{2}$;
故答案为:$\frac{\sqrt{13}}{2}$.

点评 本题考查向量模的计算,关键是用向量$\overrightarrow{AB}$与$\overrightarrow{AC}$表示$\overrightarrow{AD}$.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合A={-$\frac{1}{3}$,$\frac{1}{2}$},B={x|ax+1=0}},且B⊆A,则a的可取值组成的集合为(  )
A.{-3,2}B.{-3,0,2}C.{3,-2}D.{3,0,-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,单位位圆上的两个向量$\overrightarrow{a},\overrightarrow{b}$相互垂直,若向量$\overrightarrow{c}$满足($\overrightarrow{c}-\overrightarrow{a}$)•($\overrightarrow{c}-\overrightarrow{b}$)=0,则|$\overrightarrow{c}$|的取值范围是(  )
A.[0,1]B.[0,$\sqrt{2}$]C.[1,$\sqrt{2}$]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.各项均为正数的数列{an}的前n项和为Sn,且满足${a_2}=4\;,\;\;a_{n+1}^2=6{S_n}+9n+1\;,\;\;n∈{N^*}$.各项均为正数的等比数列{bn}满足b1=a1,b3=a2
(1)求证{an}为等差数列并求数列{an}、{bn}的通项公式;
(2)若cn=(3n-2)•bn,数列{cn}的前n项和Tn
①求Tn
②若对任意n≥2,n∈N*,均有$({T_n}-5)m≥6{n^2}-31n+35$恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知过点Q($\frac{9}{2}$,0)的直线与抛物线C:y2=4x交于两点A(x1,y1),B(x2,y2).
(Ⅰ)求证:y1y2为定值.
(Ⅱ)若△AOB的面积为$\frac{81}{4}$(O为坐标原点),求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对?x∈(0,$\frac{1}{3}$),8x≤logax+1恒成立,则实数a的取值范围是(  )
A.(0,$\frac{2}{3}$)B.(0,$\frac{1}{2}$]C.[$\frac{1}{3}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F且斜率为1的直线与渐近线有且只有一个交点,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3-x,2),$\overrightarrow{c}$=(4,x)满足(6$\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=8,则x等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P是长轴长为$2\sqrt{2}$的椭圆Q:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上异于顶点的一个动点,O为坐标原点,A为椭圆的右顶点,点M为线段PA的中点,且直线PA与OM的斜率之积恒为$-\frac{1}{2}$.
(1)求椭圆Q的方程;
(2)设过左焦点F1且不与坐标轴垂直的直线l交椭圆于C,D两点,线段CD的垂直平分线与x轴交于点G,点G横坐标的取值范围是$[-\frac{1}{4},0)$,求|CD|的最小值.

查看答案和解析>>

同步练习册答案