精英家教网 > 高中数学 > 题目详情
16.在数列{an}中,已知a1=-$\frac{1}{2}$,an+1=$\frac{1}{2}$an+1(n∈N*),求数列{an}的通项公式.

分析 通过对an+1=$\frac{1}{2}$an+1变形可知an+1-2=$\frac{1}{2}$(an-2),进而构造首项为-$\frac{5}{2}$、公比为$\frac{1}{2}$的等比数列{an-2},进而计算可得结论.

解答 解:∵an+1=$\frac{1}{2}$an+1(n∈N*),
∴an+1-2=$\frac{1}{2}$(an-2),
又∵a1-2=-$\frac{1}{2}$-2=-$\frac{5}{2}$,
∴数列{an-2}是首项为-$\frac{5}{2}$、公比为$\frac{1}{2}$的等比数列,
∴an-2=-$\frac{5}{2}$•$\frac{1}{{2}^{n-1}}$=-$\frac{5}{{2}^{n}}$,
∴an=2-$\frac{5}{{2}^{n}}$.

点评 本题考查数列的通项公式,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,?x1,x2∈[0,$\frac{1}{2}$],恒有f(x1+x2)=f(x1)•f(x2),且f(1)=a>0.
(1)求f($\frac{1}{2}$)和f($\frac{1}{4}$);
(2)求证:f(x)为周期函数;
(3)设an=f(2n+$\frac{1}{2n}$),求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.数列{an}为等差数列,a1=19,a26=-1,Sn为数列{an}的前n项和,设Tn=|Sn+6-Sn-1|,n∈N*,则Tn的最小值为(  )
A.$\frac{7}{5}$B.$\frac{12}{5}$C.$\frac{16}{5}$D.$\frac{21}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.要从6男4女中选出5人参加一项话动,按下列要求,各有多少种不同的选法?
(1)甲当选且乙不当选;
(2)至多有3男当选.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知实数x,y满足(x+2)2+(y-1)2=1.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.有8名男生和5名女生,从中任选6人.
(1)有多少种不同的选法?
(2)其中有3名女生,共有多少种不同的选法?
(3)其中至多有3名女生,共有多少种不同的选法?
(4)其中有2名女生、4名男生,分别担任6种不同的工作,共有多少种不同的分工方法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知四边形ABCD是矩形,设点集M={A,B,C,D},集合T={$\overrightarrow{PQ}$|P,Q∈M,且P,Q不重合},用列举法表示集合T={$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AD}$,$\overrightarrow{BD}$,$\overrightarrow{BA}$,$\overrightarrow{CA}$,$\overrightarrow{DA}$,$\overrightarrow{DB}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数x,y满足$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$.
(1)试求z=$\frac{y+1}{x+1}$的最大值和最小值;
(2)试求z=x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与抛物线D:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为$\sqrt{3}$
(Ⅰ)求双曲线C的渐近线方程;
(Ⅱ)求p的值.

查看答案和解析>>

同步练习册答案