精英家教网 > 高中数学 > 题目详情

已知.
(Ⅰ)当时,判断的奇偶性,并说明理由;
(Ⅱ)当时,若,求的值;
(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.

(Ⅰ)既不是奇函数,也不是偶函数;(Ⅱ)
(Ⅲ)的取值范围是.

解析试题分析:(Ⅰ)对函数奇偶性的判断,一定要结合函数特征先作大致判断,然后再根据奇函数偶函数的定义作严格的证明.当时,,从解析式可以看出它既不是奇函数,也不是偶函数.对既不是奇函数,也不是偶函数的函数,一般取两个特殊值说明.
(Ⅱ)当时,, 由,这是一个含有绝对值符号的不等式,对这种不等式,一般先分情况去绝对值符号.这又是一个含有指数式的不等式,对这种不等式,一般将指数式看作一个整体,先求出指数式的值,然后再利用指数式求出的值.
(Ⅲ)不等式恒成立的问题,一般有以下两种考虑,一是分离参数,二是直接求最值.在本题中,分离参数比较容易.分离参数时需要除以,故首先考虑的情况. 易得时,取任意实数,不等式恒成立.
,此时原不等式变为;即,这时应满足:,所以接下来就求的最大值和的最小值.
试题解析:(Ⅰ)当时,既不是奇函数也不是偶函数  
,∴ 
所以既不是奇函数,也不是偶函数        3分
(Ⅱ)当时,, 由  
  
解得(舍),或.
所以      8分
(Ⅲ)当时,取任意实数,不等式恒成立,
故只需考虑,此时原不等式变为


又函数上单调递增,所以;
对于函数 
时,在单调递减,,又,
所以,此时的取值范围是        13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,判断函数的奇偶性,并加以证明;
(2)若函数上是增函数,求实数的取值范围;
(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3+ax-2,(aR).
(l)若f(x)在区间(1,+)上是增函数,求实数a的取值范围;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是减函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点(2,0).
⑴求m的值;
⑵证明的奇偶性;
⑶判断上的单调性,并给予证明;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数为常数
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整数,使得对于任意均成立,若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出函数
求函数的定义域;
判断函数的奇偶性;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在上的函数
(1)判断函数的奇偶性;
(2)利用函数单调性的定义证明:是其定义域上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数,记
(Ⅰ)求函数的定义域及其零点;
(Ⅱ)若关于的方程在区间内仅有一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数是定义域为的奇函数.
(1)求的值;
(2)若,且上的最小值为,求的值.
(3)若,试讨论函数上零点的个数情况。

查看答案和解析>>

同步练习册答案