已知.
(Ⅰ)当时,判断的奇偶性,并说明理由;
(Ⅱ)当时,若,求的值;
(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.
(Ⅰ)既不是奇函数,也不是偶函数;(Ⅱ)或;
(Ⅲ)的取值范围是.
解析试题分析:(Ⅰ)对函数奇偶性的判断,一定要结合函数特征先作大致判断,然后再根据奇函数偶函数的定义作严格的证明.当时,,从解析式可以看出它既不是奇函数,也不是偶函数.对既不是奇函数,也不是偶函数的函数,一般取两个特殊值说明.
(Ⅱ)当时,, 由得,这是一个含有绝对值符号的不等式,对这种不等式,一般先分情况去绝对值符号.这又是一个含有指数式的不等式,对这种不等式,一般将指数式看作一个整体,先求出指数式的值,然后再利用指数式求出的值.
(Ⅲ)不等式恒成立的问题,一般有以下两种考虑,一是分离参数,二是直接求最值.在本题中,分离参数比较容易.分离参数时需要除以,故首先考虑的情况. 易得时,取任意实数,不等式恒成立.
,此时原不等式变为;即,这时应满足:,所以接下来就求的最大值和的最小值.
试题解析:(Ⅰ)当时,既不是奇函数也不是偶函数
∵,∴
所以既不是奇函数,也不是偶函数 3分
(Ⅱ)当时,, 由得
即或
解得或(舍),或.
所以或 8分
(Ⅲ)当时,取任意实数,不等式恒成立,
故只需考虑,此时原不等式变为
即
故
又函数在上单调递增,所以;
对于函数
当时,在上单调递减,,又,
所以,此时的取值范围是 13分
科目:高中数学 来源: 题型:解答题
已知函数,.
(1)若,判断函数的奇偶性,并加以证明;
(2)若函数在上是增函数,求实数的取值范围;
(3)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x3+ax-2,(aR).
(l)若f(x)在区间(1,+)上是增函数,求实数a的取值范围;
(2)若,且f(x0)=3,求x0的值;
(3)若,且在R上是减函数,求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,,为常数
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整数,使得对于任意均成立,若存在,求出 的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com