精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=m﹣
(1)若f(x)是R上的奇函数,求m的值
(2)用定义证明f(x)在R上单调递增
(3)若f(x)值域为D,且D[﹣3,1],求m的取值范围.

【答案】
(1)解:∵f(x)是R上的奇函数,

∴f(x)+f(﹣x)=m﹣ +m﹣ =0,

即2m﹣( + )=02m﹣1=0,

解得m=


(2)解:设 x1<x2且x1,x2∈R,

则f(x1)﹣f(x2)=m﹣ ﹣(m﹣ )=

∵x1<x2

∴f(x1)﹣f(x2)<0,

即f(x1)<f(x2),

∴f(x)在R上单调递增


(3)解:由 ,所以m﹣1<f(x)<m,f(x)值域为D,且D[﹣3,1],

∴D=(m﹣1,m),

∵D[﹣3,1],

∴m的取值范围是[﹣2,1]


【解析】(1)由奇函数的定义可得f(x)+f(﹣x)=0恒成立,由此可求得m值;(2)设 x1<x2且x1 , x2∈R,利用作差证明f(x1)<f(x2)即可;(3)先根据反比例函数的单调性求出值域D,然后由D[﹣3,1]可得关于m的不等式组,解出即可;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,证明:对任意的,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点为,且

1)求椭圆的标准方程;

2)圆是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求的面积的取值范围.

请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,甲向如图1所示的平面区域内随机掷点、乙向如图2所示的平面区域内随机掷点,假设点落在区域内任意一点的可能性相同.已知图1中小圆的半径是大圆半径的二分之一,图2中小正方形的顶点为大正方形各边的中点.

(1)甲、乙各掷点一次,求至少有一人掷点落在阴影区域的概率;

(2)甲、乙各掷点两次,记点落在阴影区域的次数为,求的分布列和数学期望.

12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[﹣1,1]的函数满足f(﹣x)=﹣f(x),当a,b∈[﹣1,0)时,总有 >0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线的斜率为1.

(1)如果常数,求函数在区间上的最大值;

(2)对于,如果方程上有且只有一个解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x
(1)求f(log2 )的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且
(1)若复数z1对应的点M(m,n)在曲线 上运动,求复数z所对应的点P(x,y)的轨迹方程;
(2)将(1)中的轨迹上每一点按向量 方向平移 个单位,得到新的轨迹C,求C的轨迹方程;
(3)过轨迹C上任意一点A(异于顶点)作其切线,交y轴于点B,求证:以线段AB为直径的圆恒过一定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=( x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1﹣|x|),则关于h(x)有下列命题:
①h(x)的图象关于原点对称;
②h(x)为偶函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为:②③.

查看答案和解析>>

同步练习册答案