精英家教网 > 高中数学 > 题目详情
(Ⅰ)求与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0截得的弦长为2
7
的圆的方程.
(Ⅱ)设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.
(Ⅰ)设圆心为(a,3a),
由圆与x轴相切可得圆的半径r=3|a|.
∵圆心到直线的距离d=
|a-3a|
2
=
2
a
,圆被直线x-y=0截得的弦长为2
7

∴根据垂径定理,得r2=d2+(
7
2
即9a2=2a2+7,解得a=±1.
由此可得所求圆的圆心为(1,3)或(-1,-3),半径r=3.
∴圆C的方程为 (x+1)2+(y+3)2=9或 (x-1)2+(y-3)2=9.
(Ⅱ)设P(x,y),圆上的动点N(x0,y0),则
线段OP的中点坐标为(
x
2
y
2
),线段MN的中点坐标为(
x0-3
2
y0+4
2
),
又∵平行四边形的对角线互相平分,
x
2
=
x0-3
2
y
2
=
y0+4
2
,可得x0=x+3且y0=y-4,
∴N坐标为(x+3,y-4),
N点坐标应满足圆的方程,代入化简可得(x+3)2+(y-4)2=4,
直线OM与轨迹相交于两点(-
9
5
12
5
)和(-
21
5
28
5
),不符合题意,舍去
因此,所求点P的轨迹方程为(x+3)2+(y-4)2=4(点(-
9
5
12
5
)和(-
21
5
28
5
)除外).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系xOy内有两定点M(-1,0),N(1,0),点P满足|
PM
|+|
PN
|=4
,则动点P的轨迹方程是______,|
PM
|
的最大值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面内⊙C:(x+1)2+y2=
1
4
,⊙D:(x-1)2+y2=
49
4
.动圆P与⊙C外切,与⊙D内切.
(1)求动圆圆心P的轨迹C1的方程;
(2)若过D点的斜率为2的直线与曲线C1交于两点A、B,求AB的长;
(3)过D的动直线与曲线C1交于A、B两点,线段AB中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C1:x2+y2-4x+3=0,圆C2:x2+y2-8y+15=0,动点P到圆C1,C2上点的距离的最小值相等.
(1)求点P的轨迹方程;
(2)直线l:mx-(m2+1)y=4m,m∈R,是否存在m值使直线l被圆C1所截得的弦长为
6
3
,若存在,求出m值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,DP⊥x轴,点M在DP的延长线上,且
|DM|
|DP|
=
3
2
,当点P在圆x2+y2=4上运动时,求:动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知垂直竖在水平地面上相距20米的两根旗杆的高分别为10米和15米,地面上的动点P到两旗杆顶点的仰角相等,则点P的轨迹是(  )
A.椭圆B.圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m∈R,则动圆x2+y2+4mx-2my+6m2-4=0的圆心的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,点P为双曲线上任意一点,过F1作∠F1PF2的平分线的垂线,垂足为Q,则点Q的轨迹方程为(  )
A.x2+y2=a2B.x2+y2=b2C.x2-y2=a2D.x2-y2=b2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+1(k∈R)与焦点在x轴上的椭圆恒有公共点,则t的取值范围是     

查看答案和解析>>

同步练习册答案