精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\frac{bx}{a{x}^{2}+1}$(b≠0,a>0).
(1)判断f(x)的奇偶性;
(2)若f(1)=$\frac{1}{2}$,log3(4a-b)=$\frac{1}{2}$log24.
①求a,b的值.
②已知A,B是锐角三角形ABC的内角,试判断f(sinA)与f(cosB)的大小.

分析 (1)利用奇偶函数的定义判断f(-x)与f(x)的关系;
(2)已知得到关于a,b的方程解之;再利用函数的单调性,首先判断sinA与cosB的大小.再判断f(sinA)与f(cosB)的大小.

解答 解:(1)函数f(x)=$\frac{bx}{a{x}^{2}+1}$(b≠0,a>0).
f(-x)=$\frac{-bx}{a{x}^{2}+1}=-$f(x),所以函数f(x)为奇函数;
(2)若f(1)=$\frac{1}{2}$,log3(4a-b)=$\frac{1}{2}$log24.
则①$\frac{b}{a+1}=\frac{1}{2}$且4a-b=3,解得a=1,b=1;
②由①知,得到f(x)=$\frac{x}{{x}^{2}+1}$,f'(x)=$\frac{1-{x}^{2}}{{(x}^{2}+1)^{2}}$,由f'(x)>0得到-1<x<1时,f(x)为增函数,
又A,B是锐角三角形ABC的内角,所以A+B>$\frac{π}{2}$,即A>$\frac{π}{2}-B$,所以sinA>sin($\frac{π}{2}$-B)所以1>sinA>cosB>0,
所以f(sinA)>f(cosB).

点评 本题考查了函数的奇偶性以及单调性的运用;属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.过点P(2,-1)且与向量$\overrightarrow{a}$=(-2,3)平行的直线方程为2x+3y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.(1-$\frac{2}{{x}^{2}}$)(2+$\sqrt{x}$)6的展开式中,x项的系数是(  )
A.58B.62C.238D.242

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若经过双曲线左焦点的直线与双曲线交于A,B两点,则把线段AB称为该双曲线的左焦点弦,双曲线C:$\frac{{x}^{2}}{4}$-y2=1长度为整数且不超过4的左焦点弦的条数为(  )
A.6B.7C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱锥A-BCD中,点A在BD上的射影为O,∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2$\sqrt{3}$,AC=$\sqrt{6}$.
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)若E是AC的中点,求直线BE和平面BCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{3}=1(a>0)$的离心率为2,则其一条渐近线方程为(  )
A.x-3y=0B.$\sqrt{3}$x-y=0C.x-$\sqrt{3}$y=0D.3x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设P为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$右支上一点,O是坐标原点,以OP为直径的圆与直线$y=\frac{b}{a}x$的一个交点始终在第一象限,则双曲线离心率e的取值范围是(  )
A.$({1,\sqrt{2}})$B.$({1,\sqrt{2}}]$C.$({\sqrt{2},+∞})$D.$[{\sqrt{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设双曲线的方程$\frac{y^2}{4}-\frac{x^2}{8}=1$,则该双曲线的离心率为$\sqrt{3}$,渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两家快餐店对某日7个时段光顺的客人人数进行统计并绘制茎叶图如图所示(下面简称甲数据、乙数据),且乙数据的众数为17,甲数据的平均数比乙数据平均数少2.
(1)求a,b的值.并计算乙数据的方差;
(2)现从甲、乙两组数据中随机各选一个数分别记为m,n.并进行对比分析,有放回的选取2次,记m>n的次数为X.求X的数学期望E(X).

查看答案和解析>>

同步练习册答案