分析 由双曲线的方程可得a,b,由c=$\sqrt{{a}^{2}+{b}^{2}}$,可得c,由离心率公式和渐近线方程,计算即可得到所求.
解答 解:双曲线的方程$\frac{y^2}{4}-\frac{x^2}{8}=1$,
可得a=2,b=2$\sqrt{2}$,c=$\sqrt{{a}^{2}+{b}^{2}}$=2$\sqrt{3}$,
即有离心率e=$\frac{c}{a}$=$\sqrt{3}$,
渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.
故答案为:$\sqrt{3}$,y=±$\frac{\sqrt{2}}{2}$x.
点评 本题考查双曲线的离心率的求法和渐近线方程的求法,注意运用双曲线方程求得a,b,c,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6-π}{3π}$ | B. | 1 | C. | $\frac{π}{2}$ | D. | $\frac{4-π}{2π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{2}$+1 | C. | $\sqrt{5}$ | D. | $\sqrt{5}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在CD1上存在点Q,使得PQ∥平面AA1C1C | |
| B. | 在CD1上存在点Q,使得PQ⊥平面AA1C1C | |
| C. | 在CD1上存在点Q,使得PQ∥平面A1BC1 | |
| D. | 在CD1上存在点Q,使得PQ⊥平面A1BC1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com