精英家教网 > 高中数学 > 题目详情
6.若x,y满足$\left\{\begin{array}{l}x-y≥0\\ x+y≤1\\ y≥0.\end{array}\right.$,则z=x+2y的最大值为(  )
A.0B.1C.2D.$\frac{3}{2}$

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式对应的平面区域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直线y=-$\frac{1}{2}x+\frac{z}{2}$,由图象可知当直线y=-$\frac{1}{2}x+\frac{z}{2}$经过点A时,直线y=-$\frac{1}{2}x+\frac{z}{2}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x-y=0}\\{x+y=1}\end{array}\right.$,得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,
即A($\frac{1}{2}$,$\frac{1}{2}$),
此时z的最大值为z=$\frac{1}{2}$+2×$\frac{1}{2}$=$\frac{3}{2}$,
故选:D.

点评 本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值,利用数形结合是解决线性规划问题中的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设双曲线的方程$\frac{y^2}{4}-\frac{x^2}{8}=1$,则该双曲线的离心率为$\sqrt{3}$,渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两家快餐店对某日7个时段光顺的客人人数进行统计并绘制茎叶图如图所示(下面简称甲数据、乙数据),且乙数据的众数为17,甲数据的平均数比乙数据平均数少2.
(1)求a,b的值.并计算乙数据的方差;
(2)现从甲、乙两组数据中随机各选一个数分别记为m,n.并进行对比分析,有放回的选取2次,记m>n的次数为X.求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a=$\int_{-\frac{π}{2}}^{\frac{π}{2}}$($\frac{1}{π}$-sinx)dx,则(x-$\frac{a}{{\sqrt{x}}}$)6的二项展开式中的常数项为15(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记样本x1,x2,…,xm的平均数为$\overline{x}$,样本y1,y2,…,yn的平均数为$\overline{y}$($\overline{x}$≠$\overline{y}$),若样本x1,x2,…,xm,y1,y2,…,yn的平均数为$\overline{z}$=$\frac{1}{4}$$\overline{x}$+$\frac{3}{4}$$\overline{y}$,则$\frac{m}{n}$的值为(  )
A.3B.4C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是(  )
A.y=x3B.y=lnxC.y=sinxD.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,a∈R,复数z1=3-ai,z2=1+2i,若z1•z2是纯虚数,则a=(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合M={x|x2+x-12≤0},N={y|y=3x,x≤1},则集合{x|x∈M且x∉N}为(  )
A.(0,3]B.[-4,3]C.[-4,0)D.[-4,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点A(-4,0),B(0,2)和点P(m,n)(m≠0)都在椭圆C上,BP⊥AB,且直线BP与x轴交于点M.
(Ⅰ)求椭圆C的标准方程和离心率;
(Ⅱ)求点P的坐标;
(Ⅲ)若以M为圆心,r为半径的圆在椭圆C的内部,求r的取值范围.

查看答案和解析>>

同步练习册答案