分析 利用定积分的运算求出a的值,再利用二项式展开式的通项公式求出(x-$\frac{a}{{\sqrt{x}}}$)6展开式中的常数项.
解答 解:∵a=$\int_{-\frac{π}{2}}^{\frac{π}{2}}$($\frac{1}{π}$-sinx)dx=($\frac{1}{π}$x+cosx)${|}_{-\frac{π}{2}}^{\frac{π}{2}}$=1,
∴(x-$\frac{a}{{\sqrt{x}}}$)6=(x-$\frac{1}{\sqrt{x}}$)6二项展开式中的通项公式为:
Tr+1=${C}_{6}^{r}$•x6-r•${(-\frac{1}{\sqrt{x}})}^{r}$=(-1)r•${C}_{6}^{r}$•${x}^{6-\frac{3}{2}r}$,
令6-$\frac{3}{2}$r=0,
解得r=4,
∴该二项展开式中的常数项为T4+1=(-1)4•${C}_{6}^{4}$=15.
故答案为:15.
点评 本题考查了定积分的计算问题,也考查了二项式展开式通项公式的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6-π}{3π}$ | B. | 1 | C. | $\frac{π}{2}$ | D. | $\frac{4-π}{2π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18 | B. | 6 | C. | -10 | D. | -18 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com