精英家教网 > 高中数学 > 题目详情
2.曲线y=$\frac{1}{x}$与直线x=$\frac{1}{e}$、直线x=e及x轴所围成的封闭图形的面积等于2.

分析 由题意,利用定积分表示所围成的封闭图形的面积,利用定积分计算.

解答 解:由题意,曲线y=$\frac{1}{x}$与直线x=$\frac{1}{e}$、直线x=e及x轴所围成的封闭图形的面积为${∫}_{\frac{1}{e}}^{e}\frac{1}{x}dx$=lnx|${\;}_{\frac{1}{e}}^{e}$=lne-ln$\frac{1}{e}$=2;
故答案为:2.

点评 本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{3}=1(a>0)$的离心率为2,则其一条渐近线方程为(  )
A.x-3y=0B.$\sqrt{3}$x-y=0C.x-$\sqrt{3}$y=0D.3x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若以x轴正方向为始边,曲线上的点与圆心的连线为终边的角θ为参数,则圆x2+y2-2x=0的参数方程为$\left\{\begin{array}{l}{x=cosθ+1}\\{y=sinθ}\end{array}\right.$(θ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.正方体ABCD-A1B1C1D1的棱长为1,动点P,Q分别在棱BC,CC1上,过点A,P,Q的平面截该正方体所得的截面记为S,设BP=x,CQ=y,其中x,y∈[0,1],下列命题正确的是②.(写出所有正确命题的编号)
①当x=0时,S为矩形,其面积最大为1;
②当x=y=$\frac{1}{2}$时,S为等腰梯形;
③当x=$\frac{1}{2}$,y=$\frac{3}{4}$时,S为六边形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两家快餐店对某日7个时段光顺的客人人数进行统计并绘制茎叶图如图所示(下面简称甲数据、乙数据),且乙数据的众数为17,甲数据的平均数比乙数据平均数少2.
(1)求a,b的值.并计算乙数据的方差;
(2)现从甲、乙两组数据中随机各选一个数分别记为m,n.并进行对比分析,有放回的选取2次,记m>n的次数为X.求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,在△ABC中,∠BAC=120°,AB=2,AC=1,D是BC边上的一点(包括端点),若$\overrightarrow{AD}$•$\overrightarrow{BC}$∈[m,n],则$\frac{n}{m-n}$的值为$-\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a=$\int_{-\frac{π}{2}}^{\frac{π}{2}}$($\frac{1}{π}$-sinx)dx,则(x-$\frac{a}{{\sqrt{x}}}$)6的二项展开式中的常数项为15(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的是(  )
A.y=x3B.y=lnxC.y=sinxD.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知(x-y)(x+y)5的展开式中x2y4的系数为m,则${∫}_{1}^{2}$(xm+$\frac{1}{x}$)dx=ln2+$\frac{15}{64}$.

查看答案和解析>>

同步练习册答案