【题目】设
、
分别是椭圆
的左、右焦点,
、
两点分别是椭圆
的上、下顶点,
是等腰直角三角形,延长
交椭圆
于
点,且
的周长为
.
(1)求椭圆
的方程;
(2)设点
是椭圆
上异于
、
的动点,直线
、
与直线
分别相交于
、
两点,点
,试问:
外接圆是否恒过
轴上的定点(异于点
)?若是,求该定点坐标;若否,说明理由.
【答案】(1)
;(2)是,且定点坐标为
.
【解析】
(1)利用椭圆的定义可求得
的值,再由
是等腰直角三角形可求得
、
的值,由此可得出椭圆
的方程;
(2)设点
,求出直线
、
的斜率之积为
,设直线
的方程为
,可得出直线
的方程,进而可求得点
、
的方程,假设
的外接圆过
轴上的定点
,求出
的外接圆圆心
的坐标,由
结合两点间的距离公式可求得
的值,进而可求得定点的坐标.
(1)因为
的周长为
,由定义可得
,
,
所以
,所以
,
又因为
是等腰直角三角形,且
,所以
,
所以椭圆
的方程为:
;
![]()
(2)设
,
,则
,
所以直线
与
的斜率之积
,
设直线
的斜率为
,则直线
的方程为:
,
直线
的方程:
,
由
,可得
,同理
,
假设
的外接圆恒过定点
,
,
由于线段
的垂直平分线所在直线的方程为
,
线段
的垂直平分线所在直线的方程为
,则其圆心
,
又
,所以
,解得
,
所以
的外接圆恒过定点
.
科目:高中数学 来源: 题型:
【题目】半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.如图,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为2,则其体积为______;若其各个顶点都在同一个球面上,则该球的表面积为______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)
(a>0).
(1)证明:当x∈[1,+∞)时,f(x)≥1.
(2)当0<a≤1时,对于任意的x∈(0,+∞),f(x)≥m,求整数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】垃圾种类可分为可回收垃圾,干垃圾,湿垃圾,有害垃圾,为调查中学生对垃圾分类的了解程度某调查小组随机抽取了某市的100名高中生,请他们指出生活中若干项常见垃圾的种类,把能准确分类不少于3项的称为“比较了解”少于三项的称为“不太了解”调查结果如下:
0项 | 1项 | 2项 | 3项 | 4项 | 5项 | 5项以上 | |
男生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
女生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下
列联表并判断是否有95%的把握认为了解垃圾分类与性别有关?
比较了解 | 不太了解 | 合计 | |
男生 | __________ | __________ | __________ |
女生 | __________ | __________ | __________ |
合计 | __________ | __________ | __________ |
(2)从能准确分类不少于3项的高中生中,按照男、女生采用分层抽样的方法抽取9人的样本.
(i)求抽取的女生和男生的人数;
(ii)从9人的样本中随机抽取两人,求男生女生都有被抽到的概率.
参考数据:
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,直线l的极坐标方程为ρcosθ=4,曲线C的极坐标方程为ρ=2cosθ+2sinθ,以极点为坐标原点O,极轴为x轴的正半轴建立直角坐标系,射线l':y=kx(x≥0,0<k<1)与曲线C交于O,M两点.
(Ⅰ)写出直线l的直角坐标方程以及曲线C的参数方程;
(Ⅱ)若射线l′与直线l交于点N,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为
的椭圆
:
的上下顶点分别为
,
,直线
:
与椭圆
相交于
,
两点,与
相交于点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若
,求
面积的最大值;
(Ⅲ)设直线
,
相交于点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某精密仪器生产厂准备购买
,
,
三种型号数控车床各一台,已知这三台车床均使用同一种易损件.在购进机器时,可以额外购买这种易损件作为备件,每个0.1万元.在机器使用期间,如果备件不足再购买,则每个0.2万元.现需要决策在购买机器时应同时购买几个易损件,为此搜集并整理了三种型号各120台车床在一年使用期内更换的易损零件数,得到如下统计表:
每台车床在一年中更换易损件的件数 | 5 | 6 | 7 | |
频数 |
| 60 | 60 | 0 |
| 30 | 60 | 30 | |
| 0 | 80 | 40 | |
将调查的每种型号车床在一年中更换的易损件的频率视为概率,每台车床在易损件的更换上相互独立.
(Ⅰ)求一年中
,
,
三种型号车床更换易损件的总数超过18件的概率;
(Ⅱ)以一年购买易损件所需总费用的数学期望为决策依据,问精密仪器生产厂在购买车床的同时应购买18件还是19件易损件?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com