精英家教网 > 高中数学 > 题目详情
19.如图,在四面体ABCD中,AB=1,AC=2,AD=3,∠DAB=∠DAC=60°,∠BAC=90°,G为△DBC的重心,则AG=$\frac{\sqrt{23}}{3}$.

分析 由已知求解直角三角形可得DE、AE的长,由余弦定理求得cos∠ADG,在△ADG中,再由余弦定理求得AG.

解答 解:∵AB=1,AC=2,AD=3,∠DAB=∠DAC=60°,∠BAC=90°,
∴BC=$\sqrt{5}$,DB=$\sqrt{9+1-2×3×1×cos60°}$=$\sqrt{9+1-2×3×1×\frac{1}{2}}=\sqrt{7}$,
DC=$\sqrt{9+4-2×3×2×cos60°}$=$\sqrt{9+4-2×3×2×\frac{1}{2}}=\sqrt{7}$,
∴DE=$\sqrt{(\sqrt{7})^{2}-(\frac{\sqrt{5}}{2})^{2}}=\frac{\sqrt{23}}{2}$,AE=$\frac{\sqrt{5}}{2}$,
在△ADE中,有cos∠ADG=$\frac{9+(\frac{\sqrt{23}}{2})^{2}-\frac{5}{4}}{2×3×\frac{\sqrt{23}}{2}}=\frac{9\sqrt{23}}{46}$,
∵DG=2GE,∴DG=$\frac{\sqrt{23}}{3}$,
∴在△ADG中,AG=$\sqrt{9+\frac{23}{9}-2×3×\frac{\sqrt{23}}{3}×\frac{9\sqrt{23}}{46}}=\frac{\sqrt{23}}{3}$.
故答案为:$\frac{{\sqrt{23}}}{3}$.

点评 本题考查空间距离的计算,考查余弦定理的运用,考查学生的计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足{x≥0y≥04x+3y≤12,则z=y+12x-2的取值范围是(  )
A.[-12,14]B.[-52,14]C.(-∞,-12]∪[14,+∞)D.(-∞,-52]∪[14,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线xcosθ+ysinθ+a=0与圆x2+y2=a2交点的个数是(  )
A.0B.1C.随a变化D.随θ变化

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=x3-3x2-9x(0<x<4)有(  )
A.极大值5,极小值-27B.极大值5,极小值-11
C.极大值5,无极小值D.极小值-27,无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l的参数方程是$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为p=2cosθ+4sinθ,则直线l被圆C所截得的弦长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知(a+e)x-1-lnx≤0(e是自然对数的底数)对任意x∈[$\frac{1}{e}$,2]都成立,则实数a的最大值为-e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.与⊙C1:x2+(y+2)2=25内切且与⊙C2:x2+(y-2)2=1外切的动圆圆心M的轨迹方程是(  )
A.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(y≠0)B.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(x≠0)C.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(x≠3)D.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知在平面直角坐标系xOy中,直线l过点P($\sqrt{3}$,0),且倾斜角为$\frac{π}{3}$,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.半径为4的圆C的圆心的极坐标为(4,$\frac{π}{2}$)
(1)写出直线l的参数方程和圆C的极坐标方程;
(2)试判定直线l和圆C的位置关系.若相交,求相交弦的长.

查看答案和解析>>

同步练习册答案