分析 由已知求解直角三角形可得DE、AE的长,由余弦定理求得cos∠ADG,在△ADG中,再由余弦定理求得AG.
解答 解:∵AB=1,AC=2,AD=3,∠DAB=∠DAC=60°,∠BAC=90°,
∴BC=$\sqrt{5}$,DB=$\sqrt{9+1-2×3×1×cos60°}$=$\sqrt{9+1-2×3×1×\frac{1}{2}}=\sqrt{7}$,
DC=$\sqrt{9+4-2×3×2×cos60°}$=$\sqrt{9+4-2×3×2×\frac{1}{2}}=\sqrt{7}$,
∴DE=$\sqrt{(\sqrt{7})^{2}-(\frac{\sqrt{5}}{2})^{2}}=\frac{\sqrt{23}}{2}$,AE=$\frac{\sqrt{5}}{2}$,
在△ADE中,有cos∠ADG=$\frac{9+(\frac{\sqrt{23}}{2})^{2}-\frac{5}{4}}{2×3×\frac{\sqrt{23}}{2}}=\frac{9\sqrt{23}}{46}$,
∵DG=2GE,∴DG=$\frac{\sqrt{23}}{3}$,
∴在△ADG中,AG=$\sqrt{9+\frac{23}{9}-2×3×\frac{\sqrt{23}}{3}×\frac{9\sqrt{23}}{46}}=\frac{\sqrt{23}}{3}$.
故答案为:$\frac{{\sqrt{23}}}{3}$.
点评 本题考查空间距离的计算,考查余弦定理的运用,考查学生的计算能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-12,14] | B. | [-52,14] | C. | (-∞,-12]∪[14,+∞) | D. | (-∞,-52]∪[14,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 极大值5,极小值-27 | B. | 极大值5,极小值-11 | ||
| C. | 极大值5,无极小值 | D. | 极小值-27,无极大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{9}$+$\frac{y^2}{5}$=1(y≠0) | B. | $\frac{y^2}{9}$+$\frac{x^2}{5}$=1(x≠0) | C. | $\frac{x^2}{9}$+$\frac{y^2}{5}$=1(x≠3) | D. | $\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com