精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x+2
-丨x-a丨,若存在实数x∈(-1,2)使得f(x)>0成立,求实数a的取值范围.
考点:函数恒成立问题
专题:计算题,函数的性质及应用
分析:构造函数h(x)=
x+2
,g(x)=丨x-a丨,存在实数x∈(-1,2)使得f(x)>0成立,则f(-1)≥g(-1)或f(2)≥g(2),从而可求实数a的取值范围.
解答: 解:构造函数h(x)=
x+2
,g(x)=丨x-a丨,则
∵存在实数x∈(-1,2)使得f(x)>0成立,
∴f(-1)≥g(-1)或f(2)≥g(2),
-1+2
≥|a+1|或
2+2
≥|2-a|,
∴-2≤a≤4.
∵a=4不符合题意,∴-2≤a<4.
点评:本题考查存在性问题,考查学生分析解决问题的能力,利用f(-1)≥g(-1)或f(2)≥g(2)是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4,直线l:y-kx+2=0
(1)k=1时判断圆C和直线的位置关系.
(2)若圆C上有且仅有三个点到l的距离为1,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用描述法表示下列集合:
(1)奇数的集合;
(2)正偶数的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a7=4,an+1=
3an+4
7-an

(1)试求a8和a6的值;
(2)对于数列{an},是否存在自然数m,使得当n≥m时,an<2;当n<m时,an>2,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

首项a1=
2
3
的数列{an}满足:3nan+1-anan+1=2n2+2n(n∈N*
(1)求a2,a3的值,并求数列{
an-2n
an-n
}的通项公式;
(2)设数列{an}的前n项和为Sn,证明:Sn
n2
2
+
n
6

查看答案和解析>>

科目:高中数学 来源: 题型:

证明恒等式:
tanαtan2α
tan2α-tanα
+
3
(sin2α-cos2α)=2sin(2α-
π
3
).

查看答案和解析>>

科目:高中数学 来源: 题型:

某奶茶店为了回馈客户和促销,准备推出掷骰子(投掷各面数字为1到6的均匀正方体,看面朝上的点数)赢积分券的活动,游戏规则如下:顾客每次消费后,可同时投掷三枚骰子一次,赢得一等奖、二等奖、三等奖和感谢将四个等级的积分卷,用于在以后来店消费中抵用现金.其中一等奖可获得100个积分,二等奖可获得20个积分,三等奖可获得10个积分,感谢奖可获得5个积分.
设事件A:“三连号”;事件B:“三个同点”;事件C:“恰有两个连号且恰有两个同点”.
已知:①将以上三种掷骰子的结果,按出现概率由低到高,对应定为一、二、三等奖要求的条件;②本着人人有奖原则,其余不符合一、二、三等奖要求的条件均定为感谢奖.
(1)请替该店定出各个等级奖依次对应的事件和概率;
(2)从成本考虑,希望此次活动的总体优惠幅度控制在15%内,如果准备规定100个积分抵用1杯奶茶,请你从数学期望的角度替该奶茶店计算此规定能否达到此成本控制目的(假设积分利用率为100%).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M有特征值λ1=8及对应特征向量a1=[
1
1
]
,且矩阵M对应的变换将点(-1,2)变换成(-2,4)
(Ⅰ)求矩阵M;
(Ⅱ)若直线l在矩阵M所对应的线性变换作用下得到直线l′:x-2y=4,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,若
a
cosA
=
b
sinB
,则A=
 

查看答案和解析>>

同步练习册答案