精英家教网 > 高中数学 > 题目详情
6.已知变量x,y满足:$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=($\sqrt{2}$)2x+y的最大值为(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.4

分析 作出不等式组对应的平面区域,设m=2x+y,利用线性规划的知识求出m的最大值即可求出z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
设m=2x+y得y=-2x+m,
平移直线y=-2x+m,
由图象可知当直线y=-2x+m经过点A时,直线y=-2x+m的截距最大,
此时m最大.
由$\left\{\begin{array}{l}{2x-y=0}\\{x-2y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
代入目标函数m=2x+y得z=2×1+2=4.
即目标函数z=($\sqrt{2}$)2x+y的最大值为z=($\sqrt{2}$)4=4.
故选:D.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.请你指出函数y=f(x)=$\frac{x}{1+|x|}$(x∈R)的基本性质(不必证明,并判断以下四个命题的正确性,必要时可直接运用有关其基本性质的结论加以证明)
(1)当x∈R时,等式f(x)+f(-x)=0恒成立;
(2)若f(x1)≠f(x2),则一定有x1≠x2
(3)若m>0,方程|f(x)|=m有两个不相等的实数解;
(4)函数g(x)=f(x)-x在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某商场在庆元宵节活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为10万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示的计算机程序的输出结果为(  )
A.$\frac{21}{13}$B.$\frac{13}{21}$C.$\frac{21}{34}$D.$\frac{34}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某种型号的汽车紧急刹车后滑行的距离y(km)与刹车时的速度x(km/h)的关系可以用y=ax2来描述,已知这种型号的汽车在速度为60km/h时,紧急刹车后滑行的距离为b(km).一辆这种型号的汽车紧急刹车后滑行的距离为3b(km),则这辆车的行驶速度为60$\sqrt{3}$km/h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知变量x,y满足:$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=($\sqrt{2}$)2x+y的最大值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=-x2+2x+3,若在区间[-4,4]上任取一个实数x0,则使f(x0)≥0成立的概率为(  )
A.$\frac{4}{25}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某班举行联欢会由5个节目组成,演出顺序有如下要求:节目甲必须和节目乙相邻,且节目甲不能排在第一个和最后一个,则该班联欢会节目演出顺序的编排方案共有36种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2BC=4,则质点落在以AB为直径的半圆内的概率是(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

同步练习册答案