精英家教网 > 高中数学 > 题目详情
11.已知变量x,y满足:$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=($\sqrt{2}$)2x+y的最大值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

分析 作出不等式组对应的平面区域,设m=2x+y,利用线性规划的知识求出m的最大值即可求出z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
设m=2x+y得y=-2x+m,
平移直线y=-2x+m,
由图象可知当直线y=-2x+m经过点A时,直线y=-2x+m的截距最大,
此时m最大.
由$\left\{\begin{array}{l}{2x-y=0}\\{x-2y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
代入目标函数m=2x+y得z=2×1+2=4.
即目标函数z=($\sqrt{2}$)2x+y的最大值为z=($\sqrt{2}$)4=4.
故选:D.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,数形结合的数学思想是解决此类问题的基本思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若a<0,则下列不等式成立的是(  )
A.$2a>{({\frac{1}{2}})^a}>{({0.2})^a}$B.${({\frac{1}{2}})^a}>{({0.2})^a}>2a$C.${({0.2})^a}>{({\frac{1}{2}})^a}>2a$D.$2a>{({0.2})^a}>{({\frac{1}{2}})^a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=cos2x与g(x)=cosωx(ω>0)的图象在同一直角坐标系中对称轴相同,则ω的值为(  )
A.4B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.实数x,y满足x2+y2≤5,则3|x+y|+|4y+9|+|7y-3x-18|的最大值是(  )
A.27+6$\sqrt{5}$B.27C.30D.336

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知变量x,y满足:$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=($\sqrt{2}$)2x+y的最大值为(  )
A.$\frac{2}{3}$B.1C.$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2-|x-1|-m的图象与x轴有交点的充要条件为(  )
A.m∈(0,1)B.m∈(0,1]C.m∈[0,1]D.m∈[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若x,y,z均大于零,且x+3y+4z=6,则x2y3z的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个圆锥与一个球的体积相等且圆锥的底面半径是球半径的2倍,若圆锥的高为1,则球的表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下表记录了某学生进入高三以来各次数学考试的成绩
考试第次123456789101112
成绩(分)657885878899909493102105116
将第1次到第12次的考试成绩依次记为a1,a2,…,a12.图2是统计上表中
成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是(  )
A.8B.7C.6D.5

查看答案和解析>>

同步练习册答案