精英家教网 > 高中数学 > 题目详情
1.若a<0,则下列不等式成立的是(  )
A.$2a>{({\frac{1}{2}})^a}>{({0.2})^a}$B.${({\frac{1}{2}})^a}>{({0.2})^a}>2a$C.${({0.2})^a}>{({\frac{1}{2}})^a}>2a$D.$2a>{({0.2})^a}>{({\frac{1}{2}})^a}$

分析 根据指数函数的性质即可判断,或者利用特殊值法.

解答 解:∵a<0,假设a=-1,
∴$(\frac{1}{2})^{-1}$=2,(0.2)-1=5,2a=-2,
∴${({0.2})^a}>{({\frac{1}{2}})^a}>2a$,
故选:C

点评 本题考查了指数函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知公差不为零的等差数列{an},满足a1+a3+a5=12.,且a1,a5,a17成等比数列,Sn为{an}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求使Sn<5an成立的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过圆x2+y2-4x+my=0上一点P(1,1)的切线方程为x-2y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数y=f(x)的一个等值域变换?说明你的理由;
①f(x)=log2x.x>0,x=g(t)=t+$\frac{1}{t}$,t>0;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R.
(2)设函数y=f(x)的定义域为D,值域为A,函数g(t)的定义域为D1,值域为A1,那么“D=A1”是否是“x=g(t)是y=f(x)的一个等值变换”的一个必要条件?说明理由.
(3)设f(x)=log2x的定义域为[2,8],已知x=g(t)=$\frac{m{t}^{2}-3t+n}{{t}^{2}+1}$是y=f(x)的一个等值变换,且函数y=f[g(t)]的定义域为R,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.请你指出函数y=f(x)=$\frac{x}{1+|x|}$(x∈R)的基本性质(不必证明,并判断以下四个命题的正确性,必要时可直接运用有关其基本性质的结论加以证明)
(1)当x∈R时,等式f(x)+f(-x)=0恒成立;
(2)若f(x1)≠f(x2),则一定有x1≠x2
(3)若m>0,方程|f(x)|=m有两个不相等的实数解;
(4)函数g(x)=f(x)-x在R上有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如框图,当x1=6,x2=9,p=8.5时,x3等于(  )
A.11B.10C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科学科,3门文科学科)中选择3门学科参加等级考试,小丁同学理科成绩较好,决定至少选择两门理科学科,那么小丁同学的选科方案有10种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如下程序框图,输出的i=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知变量x,y满足:$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=($\sqrt{2}$)2x+y的最大值为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

查看答案和解析>>

同步练习册答案