精英家教网 > 高中数学 > 题目详情
6.如框图,当x1=6,x2=9,p=8.5时,x3等于(  )
A.11B.10C.8D.7

分析 从程序框图中得到求p的解析式;列出方程,求出x3的值.

解答 解:∵p=$\frac{{x}_{1}+{x}_{2}}{2}$或p=$\frac{{x}_{2}+{x}_{3}}{2}$
∴8.5=$\frac{6+9}{2}$或8.5=$\frac{9+{x}_{3}}{2}$
解得x3=8
故选:C.

点评 本题主要考察了程序框图和算法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx+mx(m∈R)的图象在点(1,f(1))处的斜率为2.
(1)求实数m的值;
(2)设g(x)=$\frac{f(x)-x}{x-1}$,讨论g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.3B.$\sqrt{3}$C.$2-\sqrt{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.市积极倡导学生课外读优秀书籍活动,从参加此活动同学中,抽取60名同学在2015年3月读书活动月的课外读书时间(分钟,均成整数)分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)六组后,得到频率分布直方图(如图),回答下列问题.
(Ⅰ)从频率分布直方图中,估计本次课外课优秀书籍活动时间的中位数;
(Ⅱ)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人课外读书时间之差的绝对值大于10(分钟)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a<0,则下列不等式成立的是(  )
A.$2a>{({\frac{1}{2}})^a}>{({0.2})^a}$B.${({\frac{1}{2}})^a}>{({0.2})^a}>2a$C.${({0.2})^a}>{({\frac{1}{2}})^a}>2a$D.$2a>{({0.2})^a}>{({\frac{1}{2}})^a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=Asin(wx+θ),(w>0),若两个不等的实数x1,x2∈$\left\{{x\left|{f(x)=\frac{A}{2}}\right.}\right\}$,且|x1-x2|min=π,则f(x)的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若二次函数y=f(x)对一切x∈R恒有x2-2x+4≤f(x)≤2x2-4x+5成立,且f(5)=27,则f(11)=153.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集为U=R,且S={x|x≥1},T={x|x≤3},∁U(S∩T)=(  )
A.(-∞,3]B.[1,+∞)C.(-∞,1)∪[3,+∞)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2-|x-1|-m的图象与x轴有交点的充要条件为(  )
A.m∈(0,1)B.m∈(0,1]C.m∈[0,1]D.m∈[-1,0)

查看答案和解析>>

同步练习册答案