精英家教网 > 高中数学 > 题目详情
12.若函数f(x)满足$\frac{f'(x)-f(x)}{e^x}$=2x,f(0)=1,则当x>0时,$\frac{{f'{{(x)}^{\;}}}}{f(x)}$的取值范围是(1,2].

分析 构造函数,结合条件求出函数f(x)的解析式,结合分式函数的性质利用基本不等式法进行求解即可.

解答 解:设h(x)=$\frac{f(x)}{{e}^{x}}$,
则h′(x)=$\frac{f'(x)-f(x)}{e^x}$=2x,
即h(x)=x2+c,
即f(0)=1,
∴h(0)=$\frac{f(0)}{{e}^{0}}$=1=0+c,则c=1,
则h(x)=$\frac{f(x)}{{e}^{x}}$=x2+1,
则f(x)=ex(x2+1),
则f′(x)=ex(x2+1)+ex(2x)=ex(x2+2x+1),
则$\frac{{f'{{(x)}^{\;}}}}{f(x)}$=$\frac{{e}^{x}({x}^{2}+2x+1)}{{e}^{x}({x}^{2}+1)}$=$\frac{{x}^{2}+2x+1}{{x}^{2}+1}$=1+$\frac{2x}{{x}^{2}+1}$=1+$\frac{2}{x+\frac{1}{x}}$
当x>0时,x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,
则0<$\frac{1}{x+\frac{1}{x}}$≤$\frac{1}{2}$,
则0<$\frac{2}{x+\frac{1}{x}}$≤1,
则1<1+$\frac{2}{x+\frac{1}{x}}$≤2,
即$\frac{{f'{{(x)}^{\;}}}}{f(x)}$的取值范围是(1,2],
故答案为:(1,2].

点评 本题主要考查函数值域的求解,根据条件利用构造法求出函数的解析式,结合分式函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在?ABCD中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{c}$,$\overrightarrow{BD}$=$\overrightarrow{d}$,则下列等式中不正确的是(  )
A.$\overrightarrow{a}+\overrightarrow{b}$=$\overrightarrow{c}$B.$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{d}$C.$\overrightarrow{b}$-$\overrightarrow{a}$=$\overrightarrow{d}$D.$\overrightarrow{c}$-$\overrightarrow{d}$=2$\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:
月份i789101112
销售单价xi(元)99.51010.5118
销售量yi(件)111086514
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若曲线y=lnx的一条切线是直线$y=\frac{1}{2}x+b$,则实数b的值为-1+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.五面体ABC-DEF中,面BCFE是梯形,BC∥EF,面ABED⊥面BCFE,且AB⊥BE,DE⊥BE,AG⊥DE于G,若BE=BC=CF=2,EF=ED=4.
(Ⅰ)求证:G是DE中点;
(Ⅱ)求二面角A-CE-F的平面角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知命题p:若a<b,则ac2<bc2,命题$q:?{x_0}>0,x_0^2-ln{x_0}=1$.那么下列命题中是真命题的个数是2.
(1)pΛq
(2)p∨q
(3)¬pΛ¬q
(4)¬p∨¬q.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,△ABC在$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,M,N分是$\overrightarrow{CA}$,$\overrightarrow{CB}$上的点,且$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{a}$,$\overrightarrow{CN}$=$\frac{1}{2}$$\overrightarrow{b}$,设$\overrightarrow{AN}$与$\overrightarrow{BM}$ 交于P,用向量$\overrightarrow{a}$,$\overrightarrow{b}$ 表示向量$\overrightarrow{CP}$,并求出AP:PN,BP:PM.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某出版社检验某册书的成本费(单位:元)与印刷数(单位:千册)之间的关系,经统计得到数据(表一)并对其作初步的处理,得到如图所示的散点图及一些统一量的值(表二).
表一
x123571011202530
y9.025.274.063.032.592.282.211.891.801.75
表二 
 $\overline{x}$ $\overline{y}$ $\overline{w}$ $\sum_{i=1}^{10}$(xi$-\overline{x}$)2 $\sum_{i=1}^{10}$(wi$-\overline{w}$)2 $\sum_{i=1}^{10}$(xi$-\overline{x}$)(yi$-\overline{y}$) $\sum_{i=1}^{10}$(wi$-\overline{w}$)(yi$-\overline{y}$)
 11.4 3.39 0.249 934.4 934.4-139.03 6.196
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}$wi
(1)根据散点图可知更适宜作成本费与印刷册数的回归方程类型,试依据表中数据求出关于的回归方程(结果精确到0.01);
(2)从已有十组数据的前五组数据中任意抽取两组数据,求抽取的两组数据中有一组数据其预测值与实际值之差的绝对值超过0.02的概率.
附:对于一组数据(u1,v1),(u2,v2)…,(un,vn),其回归直线v=$\widehat{α}$+$\widehat{β}$u的斜估计分别为
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$$-\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.方程${C}_{28}^{x}$=${C}_{28}^{3x-8}$的解为(  )
A.4 或9B.9C.4D.5

查看答案和解析>>

同步练习册答案