精英家教网 > 高中数学 > 题目详情
7.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图(如图),若输入的a,b分别为21和33,则输出的a=(  )
A.2B.3C.7D.13

分析 由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.

解答 解:由a=21,b=33,a<b,
则b变为33-21=12,
由a>b,则a变为21-12=9,
由b>a,则b变为12-9=3,
由a>b,则a变为9-3=6,
由a>b,则a变为6-3=3,
由a=b=3,
则输出的a=3.
故选:B.

点评 本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设p:方程$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1表示是焦点在y轴上的椭圆;q:方程$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1表示双曲线,求使“¬p∧q”为真命题的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若点M在直线l上,l在平面α内,则M,l,α间的上关系为(  )
A.M∈l,l∈αB.M∈l,l?αC.M?l,l?αD.M?l,l∈α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下面命题正确的是(  )
A.已知直线l,点A∈l,直线m?α,A∉m,则l与m异面
B.已知直线m?α,直线l∥m,则l∥α
C.已知平面α、β,直线n⊥α,直线n⊥β,则α∥β
D.若直线a、b与α所成的角相等,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-ax,g(x)=lnx.
(1);令F(x)=f(x)-g(x),求F(x)的单调区间;
(2)设r(x)=f(x)+g($\frac{1+ax}{2}$)对任意a∈(1,2),总存在x∈[$\frac{1}{2}$,1]使不等式r(x)>k(1-a2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等差数列{an}中,有$\frac{{{a_{n+1}}+{a_{n+2}}+…+{a_{2n}}}}{n}=\frac{{{a_1}+{a_2}+…+{a_{3n}}}}{3n}$成立.类似地,在等比数列{bn}中,
有${\;}^n\sqrt{{a_{n+1}}{a_{n+2}}…{a_{2n}}}={\;}^{3n}\sqrt{{a_1}{a_2}…{a_{3n}}}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.点(7,-4)到抛物线y2=16x的焦点的距离是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中与函数y=x为同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$B.y=($\sqrt{x}$)2C.y=$\frac{{x}^{2}}{x}$D.y=lg10x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC的三个内角分别为A,B,C,且A≠$\frac{π}{2}$.
(Ⅰ)化简$\frac{sin(\frac{3π}{2}+A)•cos(\frac{π}{2}-A)}{cos(B+C)•tan(π+A)}$;
(Ⅱ)若角A满足sinA+cosA=$\frac{1}{5}$.
(i) 试判断△ABC是锐角三角形还是钝角三角形,并说明理由;
(ii) 求tanA的值.

查看答案和解析>>

同步练习册答案