精英家教网 > 高中数学 > 题目详情
12.已知等差数列{an}中,有$\frac{{{a_{n+1}}+{a_{n+2}}+…+{a_{2n}}}}{n}=\frac{{{a_1}+{a_2}+…+{a_{3n}}}}{3n}$成立.类似地,在等比数列{bn}中,
有${\;}^n\sqrt{{a_{n+1}}{a_{n+2}}…{a_{2n}}}={\;}^{3n}\sqrt{{a_1}{a_2}…{a_{3n}}}$成立.

分析 在等差数列中,等差数列的性质m+n=p+q,则am+an=ap+aq,那么对应的在等比数列中对应的性质是若m+n=p+q,则bmbn=bpbq

解答 解:等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,
等差数列中除法对应等比数列中的开方,
故此我们可以类比得到结论:${\;}^n\sqrt{{a_{n+1}}{a_{n+2}}…{a_{2n}}}={\;}^{3n}\sqrt{{a_1}{a_2}…{a_{3n}}}$.
故答案为:${\;}^n\sqrt{{a_{n+1}}{a_{n+2}}…{a_{2n}}}={\;}^{3n}\sqrt{{a_1}{a_2}…{a_{3n}}}$.

点评 本题考查类比推理,掌握类比推理的规则及类比对象的特征是解本题的关键,本题中由等差结论类比等比结论,其运算关系由加类比乘,解题的难点是找出两个对象特征的对应,作出合乎情理的类比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图所示的是北京奥运会的会徽,其中的“中国印”把它分成了5个区域,现给它着色,要求相邻区域不能用同一颜色,如果只有4种颜色可供使用,那么不同的着色方法有(  )种.
A.120B.72C.48D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与向量$\overrightarrow{a}$=(2,3,6)共线的单位向量是(  )
A.($\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$)B.(-$\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$)
C.($\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$)和(-$\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$)D.($\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$)和(-$\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某程序框图如图所示,若该程序运行后输出的值是$\frac{23}{12}$,则a的值为(  )
A.13B.12C.11D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图(如图),若输入的a,b分别为21和33,则输出的a=(  )
A.2B.3C.7D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C的极坐标方程为2ρsinθ+ρcosθ=10,曲线${C_1}:\left\{\begin{array}{l}x=3cosα\\ y=2sinα\end{array}\right.$(α为参数).
(1)求曲线C1的普通方程;
(2)若点M在曲线C1上运动,求M到曲线C的距离的最小值,并求出M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=x+b交抛物线$y=\frac{1}{2}{x^2}$于A、B两点,O为抛物线顶点,OA⊥OB,则b的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,且f(0)=f($\frac{π}{3}$),则(  )
A.f(x)的最小正周期为2πB.f(x)的图象关于直线x=$\frac{5π}{6}$对称
C.f($\frac{2π}{3}$)=-2D.f(x)在[0,$\frac{π}{4}$]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知log0.3(m+1)<log0.3(2m-1),则m的取值范围是(  )
A.(-∞,2)B.$({\frac{1}{2},2})$C.(2,+∞)D.(-1,2)

查看答案和解析>>

同步练习册答案