| A. | y=$\sqrt{{x}^{2}}$ | B. | y=($\sqrt{x}$)2 | C. | y=$\frac{{x}^{2}}{x}$ | D. | y=lg10x |
分析 根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.
解答 解:对于A,y=$\sqrt{{x}^{2}}$=|x|的解析式与y=x的解析式不相同,∴A不是同一函数;
对于B,y=${(\sqrt{x})}^{2}$=x(x≥0)与y=x(x∈R)的定义域不相同,∴B不是同一函数;
对于C,y=$\frac{{x}^{2}}{x}$=x(x≠0)与y=x(x∈R)的定义域不同,∴C不是同一函数;
对于D,y=lg10x=x(x∈R)与y=x(x∈R)的定义域相同,对应关系也相同,∴D是同一函数;
故选:D.
点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 7 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)的最小正周期为2π | B. | f(x)的图象关于直线x=$\frac{5π}{6}$对称 | ||
| C. | f($\frac{2π}{3}$)=-2 | D. | f(x)在[0,$\frac{π}{4}$]上是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2x+1 | B. | y=$\sqrt{x-1}$ | C. | y=$\frac{1}{|x|}$+1 | D. | y=x+$\sqrt{x-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com