精英家教网 > 高中数学 > 题目详情
11.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{FP}$=4$\overrightarrow{FQ}$,则QF等于3.

分析 求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.

解答 解:设Q到l的距离为d,则|QF|=d,
∵$\overrightarrow{FP}$=4$\overrightarrow{FQ}$,
∴|PQ|=3d,
∴不妨设直线PF的斜率为-$\frac{2\sqrt{2}d}{d}$=2$\sqrt{2}$,
∵F(2,0),
∴直线PF的方程为y=-2$\sqrt{2}$(x-2),
与y2=8x联立可得x=1,
∴|QF|=d=1+2=3,
故答案为:3.

点评 本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,抛物线C1:x2=2py(p>0)的点在圆C2:x2+(y-2)2=1外,且C1上任意一点M,M到直线x=-$\frac{p}{2}$的距离与M到圆C2上点的距离之和的最小值为2.
(1)求抛物线C1的方程;
(2)设P(x0,y0)为圆C2外一点,过P作圆C2的两条切线,分别与抛物线C1相交于点A、B和C、D,当P在直线y=-2上运动,且A,B,C,D的横坐标之积为32时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2-ax,g(x)=lnx.
(1);令F(x)=f(x)-g(x),求F(x)的单调区间;
(2)设r(x)=f(x)+g($\frac{1+ax}{2}$)对任意a∈(1,2),总存在x∈[$\frac{1}{2}$,1]使不等式r(x)>k(1-a2)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.点(7,-4)到抛物线y2=16x的焦点的距离是5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.抛物线y=$-\frac{1}{4}$x2的焦点坐标是(0,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中与函数y=x为同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$B.y=($\sqrt{x}$)2C.y=$\frac{{x}^{2}}{x}$D.y=lg10x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC的三个顶点都在圆O上,$\overrightarrow{AO}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$,且|$\overrightarrow{BC}$|=10,则圆O的面积为25π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线$l{\;}_1:θ=\frac{π}{3}$,$l{\;}_2:ρsinθ=4\sqrt{3}$分别与曲线C交于A,B两点(A不为极点),
(1)求A,B两点的极坐标方程;
(2)若O为极点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某研究性学习小组要进行城市空气质量调查,按地域把48个城市分成甲、乙、丙三组,其中甲、乙两组的城市数分别为8和24,若用分层抽样从这48个城市抽取12个进行调查,则丙组中应抽取的城市数为4.

查看答案和解析>>

同步练习册答案