精英家教网 > 高中数学 > 题目详情
2.已知α,β为锐角,且cosα+cosβ-cos(α+β)=$\frac{3}{2}$,求α,β

分析 先根据两角和的余弦公式和二倍角公式,得到cosα+cosβ-cos(α+β)=2cos($\frac{α+β}{2}$)cos($\frac{α-β}{2}$)-2cos2($\frac{α+β}{2}$)+1,再利用放缩法,和三角函数的性质即可求出答案.

解答 解:cosα+cosβ-cos(α+β)=cos($\frac{α+β}{2}$+$\frac{α-β}{2}$)+cos($\frac{α+β}{2}$-$\frac{α-β}{2}$)-cos(2×$\frac{α+β}{2}$),
=2cos($\frac{α+β}{2}$)cos($\frac{α-β}{2}$)-2cos2($\frac{α+β}{2}$)+1≤2cos($\frac{α+β}{2}$)-2cos2($\frac{α+β}{2}$)+1,(当且仅当cos($\frac{α-β}{2}$)=1时等式成立)
=-2[cos($\frac{α+β}{2}$)-$\frac{1}{2}$]2+$\frac{3}{2}$≤$\frac{3}{2}$,
由题目知,cos($\frac{α-β}{2}$)=1,cos($\frac{α+β}{2}$)=$\frac{1}{2}$,
α,β是锐角,
所以α=β=$\frac{π}{3}$.

点评 本题考查了两角和差的余弦公式倍角公式,放缩法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.曲线x2+4y2=4关于直线x=3对称的曲线方程是(x-6)2+4y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=2lnx+bx,直线y=2x-2与曲线y=f(x)相切,则b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个圆锥形容器,上口半径为5cm.高为6cm,容器内装满了某种液体,其中进入了一个细菌,从中取出50cm3的液体,则其中含有这个细菌的概率是$\frac{1}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知a=1,b=2,C=60°,求c,B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线E的渐近线方程为3x±4y=0,且E的右焦点为(5,0),过双曲线E中心的直线与双曲线E交于A,B两点,在双曲线E上取一点C,直线AC,BC的斜率分别为k1、k2,则k1k2等于(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{9}{16}$D.$\frac{16}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,点M(a,b).若∠MF1F2=30°,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简下列各式:
(1)$\sqrt{5-2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$-$\sqrt{6-4\sqrt{2}}$;
(2)($\sqrt{a}$+$\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}$)÷($\frac{a}{\sqrt{ab}+b}$+$\frac{b}{\sqrt{ab}-a}$-$\frac{a+b}{\sqrt{ab}}$)-$\sqrt{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若中心在原点,对称轴为坐标轴的双曲线的渐近线方程为y=±$\sqrt{2}$x,则该双曲线的离心率为(  )
A.$\sqrt{3}$或$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{2}$或3C.$\sqrt{3}$D.3

查看答案和解析>>

同步练习册答案