精英家教网 > 高中数学 > 题目详情
11.设点P在曲线上y=lnx上,点Q在曲线y=1-$\frac{1}{x}$(x>0)上,点R在直线y=x上,则|PR|+|RQ|的最小值为(  )
A.$\frac{{\sqrt{2}}}{2}(e-1)$B.$\sqrt{2}(e-1)$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

分析 求出两曲线对应函数的导数,求得切线的斜率,由与直线y=x的平行,可得切点,由点到直线的距离公式可得最小值,进而得到所求和的最小值

解答 解:函数y=lnx的导数为y′=$\frac{1}{x}$,
设曲线y=lnx与直线y=x的平行线相切的切点为(m,n),
可得$\frac{1}{m}$=1,即m=1,可得切点为(1,0),
此时PR的最小值为$\frac{|1-0|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$;
y=1-$\frac{1}{x}$(x>0)的导数为y′=$\frac{1}{{x}^{2}}$,
设曲线y=1-$\frac{1}{x}$(x>0)与直线y=x的平行线相切的切点为(s,t),
可得$\frac{1}{{s}^{2}}$=1,即s=1,可得切点为(1,0),
此时RQ的最小值为$\frac{|1-0|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$;
 则P,Q重合为(1,0),R为($\frac{1}{2}$,$\frac{1}{2}$),
|PR|+|RQ|取得最小值为$\sqrt{2}$.
故选:D.

点评 本题考查导数的运用:求切线的斜率,考查点到直线的距离公式的运用,考查最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.解不等式|x+1|+|2x-3|-2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图(如图):
(Ⅰ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅱ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30
捐款不超
过500元
6
合计
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=ax2-x-1的负零点有且仅有一个,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,直三棱柱ABC-A1B1C1的底边是边长为2的正三角形.
(Ⅰ)如果AB1⊥BC1,求三棱柱的高;
(Ⅱ)在(Ⅰ)的条件下,求二面角A1-AB1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某校高三年级共有2000名学生,其中男生有1200人,女生有800人.为了了解年级学生的睡眠时间的情况,现按照分层抽样的方法从中抽取了100名学生的睡眠时间的样本数据,并绘成了如图的频率分布直方图.
(1)求①样本中女生的人数;
②估计该校高三学生睡眠时间不少于7小时的概率;
(2)若已知所抽取样本中睡眠时间少于7小时的女生有5人,请完成下面的列联表,并判断是否有95%的把握认为睡眠时间与性别有关?
性别时间男生女生
睡眠时间少于7小时
睡眠时间不少于7小时
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,PA⊥平面ABCD,PA=2AB=2,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,E为PD的中点,在平面PCD内作EF⊥PC于点F.
(1)求证:F为PC的中点;
(2)求点F到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列极坐标表示的点在极轴所在直线下方的是(  )
A.(1,1)B.(2,2)C.(3,3)D.(4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线x+y=1与圆(x-a)2+(y-b)2=2(a>0,b>0)相切,则ab的取值范围是(  )
A.(0,$\frac{3}{2}$]B.(0,$\frac{9}{4}$]C.(0,3]D.(0,9]

查看答案和解析>>

同步练习册答案