16£®Ä³Ð£¸ßÈýÄê¼¶¹²ÓÐ2000ÃûѧÉú£¬ÆäÖÐÄÐÉúÓÐ1200ÈË£¬Å®ÉúÓÐ800ÈË£®ÎªÁËÁ˽âÄ꼶ѧÉúµÄ˯Ãßʱ¼äµÄÇé¿ö£¬ÏÖ°´ÕÕ·Ö²ã³éÑùµÄ·½·¨´ÓÖгéÈ¡ÁË100ÃûѧÉúµÄ˯Ãßʱ¼äµÄÑù±¾Êý¾Ý£¬²¢»æ³ÉÁËÈçͼµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©Çó¢ÙÑù±¾ÖÐÅ®ÉúµÄÈËÊý£»
¢Ú¹À¼Æ¸ÃУ¸ßÈýѧÉú˯Ãßʱ¼ä²»ÉÙÓÚ7СʱµÄ¸ÅÂÊ£»
£¨2£©ÈôÒÑÖªËù³éÈ¡Ñù±¾ÖÐ˯Ãßʱ¼äÉÙÓÚ7СʱµÄÅ®ÉúÓÐ5ÈË£¬ÇëÍê³ÉÏÂÃæµÄÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ˯Ãßʱ¼äÓëÐÔ±ðÓйأ¿
ÐÔ±ðʱ¼äÄÐÉúÅ®Éú
˯Ãßʱ¼äÉÙÓÚ7Сʱ
˯Ãßʱ¼ä²»ÉÙÓÚ7Сʱ
${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¨ÆäÖÐn=a+b+c+d£©

P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

·ÖÎö ¢Ù¸ù¾Ý·Ö²ã¶¨ÒåÇó½â¼´¿É£»
¢Ú¸ù¾ÝƵÂÊÖ±·½Í¼½øÐÐÇó½â£¬×é¾àΪ1£¬Çó³öÿ×éµÄ¸ÅÂÊ£¬ÇóºÍ¼´¿É£»
¢ÛÇó³ö¹«Ê½ÖеÄa£¬b£¬c£¬d´úÈ빫ʽÇóÖµÅжϼ´¿É£®

½â´ð ½â£º¢Ù100¡Á$\frac{800}{2000}$=40ÈË£»
¢ÚP£¨Ê±¼ä²»ÉÙÓÚ7Сʱ£©=0.4+0.3=0.7£»
¢ÛÉÙÓÚ7СʱµÄÅ®ÉúÓÐ5ÈË£¬ÔòÄÐÉúÓÐ25ÈË£¬
a=25£¬b=5£¬c=35£¬d=35£¬
¡àK2=$\frac{700}{72}$¡Ö9.72£¾6.635£¬
¡àÓÐ95%µÄ°ÑÎÕÈÏΪ˯Ãßʱ¼äÓëÐÔ±ðÓйأ®

µãÆÀ ±¾Ì⿼²éÁË·Ö²ã³éÑùµÄ¸ÅÄîºÍƵÂÊ·Ö²¼Ö±·½Í¼£¬¶ÀÁ¢ÐÔ¼ìÑéµÄ¼ÆËã·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÔ²OµÄ°ë¾¶³¤Îª3£¬Ô²ÄÚÒ»µãAµ½Ô²ÐÄOµÄ¾àÀëÊÇ$\sqrt{3}$£¬µãPÊÇÔ²Éϵ͝µã£¬µ±¡ÏOPAÈ¡×î´óֵʱ£¬PA=$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ò»¸ö·ä³²ÓÐ1Ö»Ã۷䣬µÚ1Ì죬Ëü·É³öÈ¥ÕÒ»ØÁË5¸ö»ï°é£»µÚ2Ì죬6Ö»ÃÛ·ä·É³öÈ¥£¬¸÷×ÔÕÒ»ØÁË5¸ö»ï°é¡­Èç¹ûÕâ¸öÕÒ»ï°éµÄ¹ý³Ì¼ÌÐøÏÂÈ¥£¬µÚ5ÌìËùÓеÄÃÛ·ä¶¼¹é³²ºó£¬·ä³²ÖÐÒ»¹²ÓÐ7776Ö»Ã۷䣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªËÄÀâ×¶P-ABCDµÄÈýÊÓͼÈçͼËùʾ£¬EÊDzàÀâPCÉϵ͝µã£®
£¨1£©ÇóËÄÀâ×¶P-ABCDµÄÌå»ý£»
£¨2£©ÊÇ·ñ²»ÂÛµãEÔÚºÎλÖ㬶¼ÓÐBD¡ÍAE£¿Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©ÈôµãEΪPCµÄÖе㣬Çó¶þÃæ½ÇE-BD-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèµãPÔÚÇúÏßÉÏy=lnxÉÏ£¬µãQÔÚÇúÏßy=1-$\frac{1}{x}$£¨x£¾0£©ÉÏ£¬µãRÔÚÖ±Ïßy=xÉÏ£¬Ôò|PR|+|RQ|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{2}}}{2}£¨e-1£©$B£®$\sqrt{2}£¨e-1£©$C£®$\frac{{\sqrt{2}}}{2}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}-{x^2}+\frac{1}{2}x£¬x£¼0\\{e^x}-1£¬x¡Ý0\end{array}$£¬Èôº¯Êýy=f£¨x£©-kxÓÐ3¸öÁãµã£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬1£©B£®£¨1£¬+¡Þ£©C£®[2£¬+¡Þ£©D£®[1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=|x+1|-|x-3|£®
£¨¢ñ£©½â²»µÈʽf£¨x£©¡Ý1£»
£¨¢ò£©Èô´æÔÚx¡ÊR£¬Ê¹f£¨x£©£¾|2a-4|£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÔÚÍ¬Ò»Æ½ÃæÖ±½Ç×ø±êϵÖУ¬½«ÇúÏßCÉÏµÄµã°´×ø±ê±ä»»$\left\{\begin{array}{l}{{x}^{¡ä}=\frac{1}{2}x}\\{{y}^{¡ä}=\frac{1}{3}y}\end{array}\right.$£¬µÃµ½ÇúÏßC¡ä£®
£¨1£©ÇóÇúÏßC¡äµÄÆÕͨ·½³Ì£»
£¨2£©ÈôµãAÔÚÇúÏßC¡äÉÏ£¬µãD£¨0£¬2£©£¬µ±µãAÔÚÇúÏßC¡äÉÏÔ˶¯Ê±£¬ÇóADÖеãPµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÖ±Ïßl£ºy=kx+1ÓëÔ²C£º£¨x-2£©2+£¨y-3£©2=1ÏཻÓÚA£¬BÁ½µã
£¨1£©ÇóÏÒABµÄÖеãMµÄ¹ì¼£·½³Ì£»
£¨2£©ÈôOÎª×ø±êÔ­µã£¬S£¨k£©±íʾ¡÷OABµÄÃæ»ý£¬Èôf£¨k£©=[S£¨k£©•£¨k2+1£©]2£¬Çóf£¨k£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸