5£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÔÚÍ¬Ò»Æ½ÃæÖ±½Ç×ø±êϵÖУ¬½«ÇúÏßCÉÏµÄµã°´×ø±ê±ä»»$\left\{\begin{array}{l}{{x}^{¡ä}=\frac{1}{2}x}\\{{y}^{¡ä}=\frac{1}{3}y}\end{array}\right.$£¬µÃµ½ÇúÏßC¡ä£®
£¨1£©ÇóÇúÏßC¡äµÄÆÕͨ·½³Ì£»
£¨2£©ÈôµãAÔÚÇúÏßC¡äÉÏ£¬µãD£¨0£¬2£©£¬µ±µãAÔÚÇúÏßC¡äÉÏÔ˶¯Ê±£¬ÇóADÖеãPµÄ¹ì¼£·½³Ì£®

·ÖÎö £¨1£©ÀûÓÃ×ø±ê×ªÒÆ£¬´úÈë²ÎÊý·½³Ì£¬ÏûÈ¥²ÎÊý¼´¿ÉÇóÇúÏßC¡äµÄÆÕͨ·½³Ì£»
£¨2£©ÉèP£¨x£¬y£©£¬A£¨x0£¬y0£©£¬µãAÔÚÇúÏßC¡äÉÏ£¬D£¨0£¬2£©£¬µãAÔÚÇúÏßC¡äÉÏ£¬Áгö·½³Ì×飬¼´¿ÉÇóADÖеãPµÄ¹ì¼£·½³Ì£®

½â´ð ½â£º£¨1£©½«$\left\{\begin{array}{l}{x=4cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬´úÈë$\left\{\begin{array}{l}{{x}^{¡ä}=\frac{1}{2}x}\\{{y}^{¡ä}=\frac{1}{3}y}\end{array}\right.$£¬µÃµ½ÇúÏßC¡äµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x¡ä=2cos¦È}\\{y¡ä=sin¦È}\end{array}\right.$£®
¡àÇúÏßC¡äµÄÆÕͨ·½³Ì·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£»
£¨2£©ÉèP£¨x£¬y£©£¬A£¨x0£¬y0£©£¬ÓÖD£¨0£¬2£©£¬ÇÒADÖеãΪP
¡àÓУº$\left\{\begin{array}{l}{{x}_{0}=2x}\\{{y}_{0}=2y-2}\end{array}\right.$
ÓÖµãAÔÚÇúÏßC'ÉÏ£¬¡à´úÈëC'µÄÆÕͨ·½³ÌµÃx2+£¨2y-2£©2=1
¡à¶¯µãPµÄ¹ì¼£·½³ÌΪx2+4£¨y-1£©2=1£®            ¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍÖ±½Ç×ø±êµÄ»¥»¯£¬ÀûÓÃÖ±½Ç×ø±ê·½³ÌÓë²ÎÊý·½³Ì¼äµÄ¹ØÏµ£¬¿¼²é´úÈë·¨µÄÔËÓ㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¹úÇì½ÚÆÚ¼ä£¬³üÖÝÀÅçðɽ¹«Ô°¾ÙÐÐÃâ·ÑÓÎÔ°Ò»Ìì»î¶¯£¬Ô糿6µã30·ÖÓÐ1È˽øÈ빫԰£¬½ÓÏÂÀ´µÄµÚÒ»¸ö30·ÖÖÓÄÚÓÐ2È˽øÈ¥³öÀ´1È˳öÀ´£¬µÚ¶þ¸ö30·ÖÖÓÄÚÓÐ4È˽øÈ¥2È˳öÀ´£¬µÚÈý¸ö30·ÖÖÓÄÚÓÐ8È˽øÈ¥3È˳öÀ´£¬µÚËĸö30·ÖÖÓÄÚÓÐ16È˽øÈ¥4È˳öÀ´£¬¡­£¬°´ÕÕÕâÖÖ¹æÂɽøÐÐÏÂÈ¥£¬µ½ÉÏÎç11µã¹«Ô°ÄÚµÄÈËÊýÊÇ£¨¡¡¡¡£©
A£®29-37B£®210-46C£®211-56D£®212-67

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³Ð£¸ßÈýÄê¼¶¹²ÓÐ2000ÃûѧÉú£¬ÆäÖÐÄÐÉúÓÐ1200ÈË£¬Å®ÉúÓÐ800ÈË£®ÎªÁËÁ˽âÄ꼶ѧÉúµÄ˯Ãßʱ¼äµÄÇé¿ö£¬ÏÖ°´ÕÕ·Ö²ã³éÑùµÄ·½·¨´ÓÖгéÈ¡ÁË100ÃûѧÉúµÄ˯Ãßʱ¼äµÄÑù±¾Êý¾Ý£¬²¢»æ³ÉÁËÈçͼµÄƵÂÊ·Ö²¼Ö±·½Í¼£®
£¨1£©Çó¢ÙÑù±¾ÖÐÅ®ÉúµÄÈËÊý£»
¢Ú¹À¼Æ¸ÃУ¸ßÈýѧÉú˯Ãßʱ¼ä²»ÉÙÓÚ7СʱµÄ¸ÅÂÊ£»
£¨2£©ÈôÒÑÖªËù³éÈ¡Ñù±¾ÖÐ˯Ãßʱ¼äÉÙÓÚ7СʱµÄÅ®ÉúÓÐ5ÈË£¬ÇëÍê³ÉÏÂÃæµÄÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ˯Ãßʱ¼äÓëÐÔ±ðÓйأ¿
ÐÔ±ðʱ¼äÄÐÉúÅ®Éú
˯Ãßʱ¼äÉÙÓÚ7Сʱ
˯Ãßʱ¼ä²»ÉÙÓÚ7Сʱ
${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¨ÆäÖÐn=a+b+c+d£©

P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\frac{-{x}^{2}+ax-a}{{e}^{x}}$£¨x£¾0£¬a¡ÊR£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ¼«Öµµã£»
£¨2£©Éèg£¨x£©=$\frac{f£¨x£©+f¡ä£¨x£©}{x-1}$£¬Èôº¯Êýg£¨x£©ÔÚ£¨0£¬1£©¡È£¨1£¬+¡Þ£©ÄÚÓÐÁ½¸ö¼«Öµµãx1£¬x2£¬ÇóÖ¤£ºg£¨x1£©•g£¨x2£©£¼$\frac{4}{{e}^{2}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁм«×ø±ê±íʾµÄµãÔÚ¼«ÖáËùÔÚÖ±ÏßÏ·½µÄÊÇ£¨¡¡¡¡£©
A£®£¨1£¬1£©B£®£¨2£¬2£©C£®£¨3£¬3£©D£®£¨4£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èçͼ£¬l1£¬l2£¬l3ÊÇÍ¬Ò»Æ½ÃæÄÚµÄÈýÌõƽÐÐÖ±Ïߣ¬l2£¬l3ÔÚl1µÄͬ²à£®l1Óël2µÄ¾àÀëÊÇd£¬l2Óël3µÄ¾àÀëÊÇ2d£¬±ß³¤Îª1µÄÕýÈý½ÇÐÎABCµÄÈý¸ö¶¥µã·Ö±ðÔÚl1£¬l2£¬l3ÉÏ£¬Ôòd=$\frac{{\sqrt{21}}}{14}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£»ÔÚ¼«×ø±êϵÖУ¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«Öᣩ£¬Å×ÎïÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=sin¦È£®
£¨1£©½«Å×ÎïÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÈôÖ±ÏßlÓëÅ×ÎïÏßCÏཻÓÚA£¬BÁ½µã£¬ÇóÏß¶ÎABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªa£¬b¡Ê£¨0£¬+¡Þ£©£¬º¯Êýy=loga£¨x-2b£©µÄͼÏó¹ýµã£¨2£¬1£©£¬Ôò$\frac{2}{a}$+$\frac{4}{b}$µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®3B£®6C£®9D£®4$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÁ½ÌõÖ±Ïßl1£ºy=mºÍl2£ºy=$\frac{8}{2m+1}$£¨m£¾0£©£¬l1Ó뺯Êýy=|log2x|µÄͼÏó´Ó×óµ½ÓÒÏཻÓÚA¡¢B£¬l2Ó뺯Êýy=|log2x|µÄͼÏó´Ó×óµ½ÓÒÏཻÓÚC¡¢D£¬¼ÇÏß¶ÎACºÍBDÔÚxÖáÉϵÄͶӰ³¤¶È·Ö±ðΪa£¬b£¬µ±m±ä»¯Ê±£¬$\frac{b}{a}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®16$\sqrt{2}$B£®8$\sqrt{2}$C£®8$\root{3}{4}$D£®4$\root{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸