精英家教网 > 高中数学 > 题目详情
15.样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其样本方差为(  )
A.$\frac{{\sqrt{10}}}{5}$B.$\frac{{\sqrt{30}}}{5}$C.$\sqrt{2}$D.2

分析 根据平均数公式先求出m,再求出方差.

解答 解:由已知0,1,2,3,m的平均值为l,即有(0+1+2+3+m)÷5=1,易得m=-1
根据方差计算公式得s2=$\frac{1}{5}$[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=$\frac{1}{5}$×10=2
故选:D.

点评 本题考查了样本数据平均数、方差、标准差的计算.属于简单题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在(1+x)n的展开式中,只有第4项的系数最大,则n等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心、椭圆的短半径为半径的圆与直线l:x-y+$\sqrt{6}$=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连结PB交椭圆C于另一点,设直线PB的方程y=k(x-4),B(x1,y1),A(x1,-y1),求直线AE与x轴的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的公差d≠0,且a1,a5,a17依次成等比,则这个等比数列的公比是(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.本小题满分12分)
已知函数f(x)=sinx(2cosx-sinx)+cos2x.
(Ⅰ)讨论函数f(x)在[0,π]上的单调性;
(Ⅱ)设$\frac{π}{4}$<α<$\frac{π}{2}$,且f(α)=-$\frac{5\sqrt{2}}{13}$求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}(3a-1)x+4a,x<1\\{a^x}-a,x≥1\end{array}$,且f′(x)<0在(-∞,+∞)上恒成立,那么a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{7}$,$\frac{1}{3}$)D.[$\frac{1}{7}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=ex-a|x-1|-1(其中无理数e=2.71828…,实数a>-e)
(1)讨论函数f(x)的单调性;
(2)若g(x)=ln(ex+a)-lnx,当e<a<e2时,求证:对任意实数x>lna,不等式f(g(x))<f(2x)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xe1-x+3,g(x)=-2x2+ax-lnx(a∈R)
(1)若函数f(x)在点P(1,f(1))处的切线l与g(x)在点(1,g(1))处的切线平行,求g(x)的单调区间
(2)若对任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x)=g(x0)+2x02成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两人玩一种游戏,每次由甲乙各出1到5根手指头,若和为偶数则甲赢,否则乙赢.
(1)若以A表示事件“和为6”,求P(A).
(2)若以B表示事件“和小于4或大于9”,求P(B).
(3)这个游戏公平吗?请说明;理由.

查看答案和解析>>

同步练习册答案