精英家教网 > 高中数学 > 题目详情
2.函数y=sinx(x∈[$\frac{π}{2}$,$\frac{3π}{2}$])的反函数为y=π-arcsinx.

分析 由条件利用反正弦函数的定义和性质,得出结论.

解答 解:函数y=sinx(x∈[$\frac{π}{2}$,$\frac{3π}{2}$])的反函数为y=π-arcsinx,
故答案为:y=π-arcsinx.

点评 本题主要考查反正弦函数的定义和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设在椭圆$\left\{\begin{array}{l}{x=2cosφ}\\{y=4sinφ}\end{array}\right.$ (φ为参数)上的两个动点P1,P2所对应的参数分别为φ1,φ2,且φ12=$\frac{π}{3}$,求线段P1P2的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a>b.则下列各式正确的是(  )
A.a•lgx>b•lgxB.ax2>bx2C.a2>b2D.a•2x>b•2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\frac{3π}{2}$<α<2π,且cosα=$\frac{1}{4}$,求$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a>b>c,且a+b+c=0,则下列不等式中正确的是(  )
A.a2>b2>c2B.ac>bcC.ab>acD.a|b|>c|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)是n次多项式,g(x)是m次多项式,m、n∈N*,那么f(x)•g(x)展开后至多有多少项?整理合并同类项后至多有多少项?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=ax2+bx-3在x=1处取得极值,且在(0,-3)点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=xf(x)+4x在x∈[0,2]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过点M(2,0),过点Q(1,0)的直线和椭圆C相交于A,B两点,设点P(4,3),记PA,PB的斜率分别为k1,k2
(1)求椭圆C的方程;
(2)探究k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的范围;
(3)探究k1•k2是否为定值?如果是,求出该定值;如果不是,求出k1•k2的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果复数$\frac{3-bi}{2+i}$(b∈R,i为虚数单位)的实部与虚部相等,则b的值为(  )
A.1B.-6C.3D.-9

查看答案和解析>>

同步练习册答案