精英家教网 > 高中数学 > 题目详情
14.已知二次函数f(x)=ax2+bx-3在x=1处取得极值,且在(0,-3)点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=xf(x)+4x在x∈[0,2]的最值.

分析 (1)由f(x)=ax2+bx-3,知f′(x)=2ax+b.由二次函数f(x)=ax2+bx-3在x=1处取得极值,且在(0,-3)点处的切线与直线2x+y=0平行,知f′(1)=0,f′(0)=-2,由此能求出a,b,进而得到f(x);
(2)由f(x)=x2-2x-3,知g(x)=xf(x)+4x=x3-2x2+x,所以g′(x)=3x2-4x+1=(3x-1)(x-1).令g′(x)=0,得x1=$\frac{1}{3}$,x2=1,求得极值.由g(0)=0,g(2)=2,能求出函数g(x)的最大值和最小值.

解答 解:(1)∵f(x)=ax2+bx-3,
∴f′(x)=2ax+b.
∵二次函数f(x)=ax2+bx-3在x=1处取得极值,
且在(0,-3)点处的切线与直线2x+y=0平行,
∴f′(1)=0,f′(0)=-2,
即为2a+b=0,b=-2,
解得a=1,b=-2.
可得f(x)=x2-2x-3;
(2)∵f(x)=x2-2x-3,
∴g(x)=xf(x)+4x=x3-2x2+x,
即有g′(x)=3x2-4x+1=(3x-1)(x-1).
令g′(x)=0,得x=$\frac{1}{3}$,或x=1.
且g($\frac{1}{3}$)=$\frac{4}{27}$,g(1)=0,
又g(0)=0,g(2)=2,
可得函数g(x)的最大值为2,最小值为0.

点评 本题考查导数的运用:求切线的斜率和闭区间上函数最值,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知指数函数y=g(x)满足:g($\frac{1}{2}$)=$\sqrt{2}$,定义域为R的函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若对于任意x∈[-5,5],都有f(1-x)+f(1-2x)>0成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.a、b、c、d、e是从集合{1,2,3,4,5}中任取的5个元素(不允许重复),则abc+de为奇数的概率为(  )
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=sinx(x∈[$\frac{π}{2}$,$\frac{3π}{2}$])的反函数为y=π-arcsinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知α∈(0,2π),根据下列条件,求角α.
(1)cosα=$\frac{1}{2}$;
(2)sinα=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题中,①1+i2=0;②若a,b∈R,且a>b,则a+i>b+i;③若x2+y2=0,则x=y=0;④已知复数z的实部为-1,虚部为2,则|z|=$\sqrt{5}$.其中,正确命题的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.利用关系式1+tan2α=sec2α与1+cot2α=csc2α,证明:$\frac{1-cscα+cotα}{1+cscα-cotα}$=$\frac{cscα+cotα-1}{cscα+cotα+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知复数z=(5-2i)2(i为虚数单位),则z的实部为-21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正项数列{an}的前n项和为Sn,且2Sn=an2+an(n∈N*),设cn=(-1)n$\frac{2{a}_{n}+1}{2{S}_{n}}$,则数列{cn}的前2016项的和为(  )
A.-$\frac{2015}{2016}$B.-$\frac{2016}{2015}$C.-$\frac{2017}{2016}$D.-$\frac{2016}{2017}$

查看答案和解析>>

同步练习册答案