精英家教网 > 高中数学 > 题目详情
6.利用关系式1+tan2α=sec2α与1+cot2α=csc2α,证明:$\frac{1-cscα+cotα}{1+cscα-cotα}$=$\frac{cscα+cotα-1}{cscα+cotα+1}$.

分析 把要证的等式利用同角三角函数的基本关系等价转化为①,再由条件可得①显然成立,从而证得等式成立.

解答 解:等式$\frac{1-cscα+cotα}{1+cscα-cotα}$=$\frac{cscα+cotα-1}{cscα+cotα+1}$,
等价于(1+cotα-cscα)•(1+cotα+cscα)=(cscα+cotα-1)•[cscα-(cotα-1)],
等价于(1+cotα)2-csc2α=csc2α-(cotα-1)2
等价于1+cot2α+2cotα-csc2α=csc2α-cot2α-1+2cotα ①.
∵1+cot2α=csc2α,
故①等价于2cotα=2cotα,此式显然成立,故等式$\frac{1-cscα+cotα}{1+cscα-cotα}$=$\frac{cscα+cotα-1}{cscα+cotα+1}$成立.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,设$\overrightarrow{CB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}•\overrightarrow{b}$=-$\sqrt{3}$,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a>b>c,且a+b+c=0,则下列不等式中正确的是(  )
A.a2>b2>c2B.ac>bcC.ab>acD.a|b|>c|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数f(x)=ax2+bx-3在x=1处取得极值,且在(0,-3)点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=xf(x)+4x在x∈[0,2]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sin(π+α)=-$\frac{3}{5}$.且α是第二象限角,tan($\frac{3π}{2}$+θ)=-2,且θ是第三象限的角,求sin(α-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),过点M(2,0),过点Q(1,0)的直线和椭圆C相交于A,B两点,设点P(4,3),记PA,PB的斜率分别为k1,k2
(1)求椭圆C的方程;
(2)探究k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的范围;
(3)探究k1•k2是否为定值?如果是,求出该定值;如果不是,求出k1•k2的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(2x)=log4$\sqrt{\frac{10x-1}{3}}$,则f(5)的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{6}$,则AA1与平面AB1C1所成的角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将函数f(x)的图象向左平移$\frac{π}{3}$个单位长度后,得到$g(x)=2sin(2x+\frac{π}{6})$的图象,则f(x)的解析式为f(x)=-2cos2x.

查看答案和解析>>

同步练习册答案