精英家教网 > 高中数学 > 题目详情
5.将函数f(x)的图象向左平移$\frac{π}{3}$个单位长度后,得到$g(x)=2sin(2x+\frac{π}{6})$的图象,则f(x)的解析式为f(x)=-2cos2x.

分析 由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:由题意可得,把$g(x)=2sin(2x+\frac{π}{6})$的图象向右平移$\frac{π}{3}$个单位长度后,
得到f(x)=2sin[2(x-$\frac{π}{3}$)+$\frac{π}{6}$]=2sin(2x-$\frac{π}{2}$)=-2cos2x的图象,
故答案为:f(x)=-2cos2x.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.利用关系式1+tan2α=sec2α与1+cot2α=csc2α,证明:$\frac{1-cscα+cotα}{1+cscα-cotα}$=$\frac{cscα+cotα-1}{cscα+cotα+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|y=$\sqrt{(1-x)(x+3)}$},B={x|log2x≤1},则A∩B=(  )
A.{x|-3≤x≤1}B.{x|0<x≤1}C.{x|-3≤x≤2}D.{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.正项数列{an}的前n项和为Sn,且2Sn=an2+an(n∈N*),设cn=(-1)n$\frac{2{a}_{n}+1}{2{S}_{n}}$,则数列{cn}的前2016项的和为(  )
A.-$\frac{2015}{2016}$B.-$\frac{2016}{2015}$C.-$\frac{2017}{2016}$D.-$\frac{2016}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在一次文、理科学习倾向的调研中,对高一年段1000名学生进行文综、理综各一次测试(满分均为300分).测试后,随机抽取若干名学生成绩,记理综成绩X,文综成绩为Y,|X-Y|为Z,将Z值分组统计制成下表,并将其中女生的Z值分布情况制成频率分布直方图
值分布情况制成频率分布直方图(如图所示).
分组[0,20)[20,40)[40,60}[60,80)[80,100)[100,120)[120,140)
频数418426648202
(Ⅰ)若已知直方图中[60,80)频数为25,试分别估计全体学生中,Z∈[0,20)的男、女生人数;
(Ⅱ)记Z的平均数为$\overline{Z}$,如果$\overline{Z}$>60称为整体具有学科学习倾向,试估计高一年段女生的$\overline{Z}$值(同一组中的数据用该组区间中点值作代表),并判断高一年段女生是否整体具有显著学科学习倾向.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}中${a_1}=\frac{1}{2},{a_{n+1}}=\frac{a_n}{{1+3{a_n}}}$,记数列$\{\frac{1}{a_n}\}$的前n项和为Tn,则T8的值为(  )
A.57B.77C.100D.126

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的公差d=2,其前n项和为Sn,数列{bn}的首项b1=2,其前n项和为Tn,满足${2^{({\sqrt{S_n}+1})}}$=Tn+2,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{|anbn-14|}的前n项和Wn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若实数x,y满足不等式组$\left\{\begin{array}{l}y≤5\\ 2x-y+3≤0\\ x+y-1≥0\end{array}\right.$,则z=x+2y的最大值是11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列关于实数a,b的不等式中,不恒成立的是(  )
A.a2+b2≥2abB.a2+b2≥-2abC.${({\frac{a+b}{2}})^2}≥ab$D.${({\frac{a+b}{2}})^2}≥-ab$

查看答案和解析>>

同步练习册答案