精英家教网 > 高中数学 > 题目详情
17.已知等差数列{an}的公差d=2,其前n项和为Sn,数列{bn}的首项b1=2,其前n项和为Tn,满足${2^{({\sqrt{S_n}+1})}}$=Tn+2,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{|anbn-14|}的前n项和Wn

分析 (I)由${2^{({\sqrt{S_n}+1})}}={T_n}+2,n∈{N^*}$,可得${2}^{\sqrt{{a}_{1}}+1}$=T1+2=22,解得a1.利用等差数列的通项公式及其前n项和公式可得an,Sn.可得2n+1=Tn+2,利用递推关系可得bn
(II)令cn=anbn-14=(2n-1)•2n-14.可得:c1=-12,c2=-2,n≥3,cn>0.n≥3,Wn=c1+c2+…+cn-2c1-2c2.Wn=1×2+3×22+…+(2n-1)2n-14n+28,令Qn=1×2+3×22+…+(2n-1)2n,利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:(I)∵${2^{({\sqrt{S_n}+1})}}={T_n}+2,n∈{N^*}$,∴${2}^{\sqrt{{a}_{1}}+1}$=T1+2=2+2=4=22,∴$\sqrt{{a}_{1}}$+1=2,解得a1=1.
∴an=1+(n-1)×2=2n-1.∴Sn=$\frac{n(1+2n-1)}{2}$=n2
∴2n+1=Tn+2,
∴当n≥2时,2n+1-2n=Tn+2-(Tn-1+2)=bn
∴bn=2n,当n=1时也成立.
∴bn=2n
(II)令cn=anbn-14=(2n-1)•2n-14.∴c1=-12,c2=-2,n≥3,cn>0.
∴n≥3,Wn=-c1-c2+c3+…+cn=c1+c2+…+cn-2c1-2c2
Wn=1×2+3×22+…+(2n-1)2n-14n+28,
令Qn=1×2+3×22+…+(2n-1)2n
2Qn=1×22+3×23+…+(2n-3)•2n+(2n-1)•2n+1
∴-Qn=2(2+22+…+2n)-2-(2n-1)•2n+1=2×$\frac{2({2}^{n}-1)}{2-1}$-2-(2n-1)•2n+1=(3-2n)•2n+1-6,
∴Qn=(2n-3)•2n+1+6.∴Wn=$\left\{\begin{array}{l}{12,n=1}\\{14,n=2}\\{(2n-3)•{2}^{n+1}-14n+34,n≥3}\end{array}\right.$.

点评 本题考查了递推关系、等差数列的通项公式及其前n项和公式,考查了分类讨论、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(2x)=log4$\sqrt{\frac{10x-1}{3}}$,则f(5)的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,BC是半圆O的直径,AD⊥BC,垂足为D,$\widehat{AB}=\widehat{AF}$,BF与AD、AO分别交于点E、G.
(1)证明:∠DAO=∠FBC;
(2)证明:AE=BE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将函数f(x)的图象向左平移$\frac{π}{3}$个单位长度后,得到$g(x)=2sin(2x+\frac{π}{6})$的图象,则f(x)的解析式为f(x)=-2cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(1-x)6(1+x)4的展开式中x2的系数是(  )
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a>0且a≠l,函数f(x)=$\left\{\begin{array}{l}{{a}^{x+1}-2,x≤0}\\{g(x),x>0}\end{array}\right.$为奇函数,则a=2,g(f(2))=2-.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O是AE的中点,以AE为折痕向上折起,使D为D′,且D′B=D′C.

(Ⅰ)求证:平面D′AE⊥平面ABCE;
(Ⅱ)求CD′与平面ABD′所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow a=(λ+1,0,2λ)$,$\overrightarrow b=(6,2μ-1,2)$,若$\overrightarrow a⊥\overrightarrow b$,则λ的值为(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$
C.$-\frac{1}{10}$D.不确定,与μ值相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将两名男生、两名女生发到三个不同的班取作经验交流,每个班至少分到一名学生,且两名女生不能分到同一个班,则不同的分法的种数为(  )
A.18B.24C.30D.36

查看答案和解析>>

同步练习册答案