精英家教网 > 高中数学 > 题目详情
7.将两名男生、两名女生发到三个不同的班取作经验交流,每个班至少分到一名学生,且两名女生不能分到同一个班,则不同的分法的种数为(  )
A.18B.24C.30D.36

分析 由题意可以分两类,2名男生一组,两名女生各一组,或1名男生和一名女生一组,另外的一男一女各一组,根据分类计数原理可得.

解答 解:由题意可知,4人只能分为;2名男生一组,两名女生各一组,或1名男生和一名女生一组,另外的一男一女各一组,
故有A33(1+${C}_{2}^{1}{C}_{2}^{1}$)=30种,
故选:C.

点评 本题考查了分组分配问题,关键是分组,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}的公差d=2,其前n项和为Sn,数列{bn}的首项b1=2,其前n项和为Tn,满足${2^{({\sqrt{S_n}+1})}}$=Tn+2,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)求数列{|anbn-14|}的前n项和Wn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x||x-1|≤1,x∈R},${B}=\left\{{x\left|{\sqrt{x}≤2,x∈{Z}}\right.}\right\}$,则A∩B=(  )
A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列关于实数a,b的不等式中,不恒成立的是(  )
A.a2+b2≥2abB.a2+b2≥-2abC.${({\frac{a+b}{2}})^2}≥ab$D.${({\frac{a+b}{2}})^2}≥-ab$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b,c分别是△ABC中角A,B,C的对边长,b和c是关于x的方程x2-9x+25cosA=0的两个根(b>c),且$({sinB+sinC+sinA})({sinB+sinC-sinA})=\frac{18}{5}sinBsinC$,则△ABC的形状为(  )
A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设点P(x0,y0)是函数y=tanx与y=-x(x≠0)的图象的一个交点,则(x02+1)(1+cos2x0)的值为(  )
A.2B.2+$\sqrt{2}$C.2+$\sqrt{3}$D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知PA⊥矩形ABCD所在的平面,M、N分别为AB、PC的中点,∠PDA=45°.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.若a,b∈R,则“ab≠0”是“a≠0”的充分不必要条件
C.命题“?x0∈R,x02+x0+1<0”的否定是“?x∈R,x2+x+1>0”
D.若“p且q”为假,则p,q全是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sinαtanα≥0,则α的取值集合为{α|2kπ-$\frac{π}{2}$<α<2kπ+$\frac{π}{2}$或α=(2k+1)π(k∈Z)}..

查看答案和解析>>

同步练习册答案