精英家教网 > 高中数学 > 题目详情
1.已知sin(π+α)=-$\frac{3}{5}$.且α是第二象限角,tan($\frac{3π}{2}$+θ)=-2,且θ是第三象限的角,求sin(α-θ)的值.

分析 由条件利用同角三角函数的基本关系,诱导公式求得sinα、cosα、sinθ、cosθ的值,再利用两角和的正弦公式求得sin(α-θ)的值.

解答 解:∵sin(π+α)=-sinα=-$\frac{3}{5}$,∴sinα=$\frac{3}{5}$,∵α是第二象限角,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{4}{5}$.
∵tan($\frac{3π}{2}$+θ)=-cotθ=-2,∴cotθ=2=$\frac{1}{tanθ}$,∴tanθ=$\frac{1}{2}$=$\frac{sinθ}{cosθ}$.
再根据sin2θ+cos2θ=1,且θ是第三象限的角,∴sinθ=-$\frac{\sqrt{5}}{5}$,cosθ=-$\frac{2\sqrt{5}}{5}$.
∴sin(α-θ)=sinαcosθ-cosαsinθ=$\frac{3}{5}•(-\frac{2\sqrt{5}}{5})$-(-$\frac{4}{5}$)•(-$\frac{\sqrt{5}}{5}$)=-$\frac{2\sqrt{5}}{5}$.

点评 本题主要考查同角三角函数的基本关系,诱导公式,两角和的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知曲线y=$\sqrt{x}$,求
(1)与直线y=2x-4平行的曲线的切线方程;
(2)求过点P(0,1)且与曲线相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知p:m2-3m+2>0;q:“x2-2x≤0”是“x2-2mx-3m2≤0(m>0)”的充分不必要条件,若p∧q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知α∈(0,2π),根据下列条件,求角α.
(1)cosα=$\frac{1}{2}$;
(2)sinα=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的导数.
(1)y=(x+1)2-1gx;
(2)y=$\frac{cos2x}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.利用关系式1+tan2α=sec2α与1+cot2α=csc2α,证明:$\frac{1-cscα+cotα}{1+cscα-cotα}$=$\frac{cscα+cotα-1}{cscα+cotα+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.由定积分的性质和几何意义,求${∫}_{0}^{1}$($\sqrt{1{-(x-1)}^{2}}$+1)dx=$\frac{π}{4}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={y|y=2x},N={x|y=lg(x-x2),则M∩N为(  )
A.(0,1)B.(1,2)C.(0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在一次文、理科学习倾向的调研中,对高一年段1000名学生进行文综、理综各一次测试(满分均为300分).测试后,随机抽取若干名学生成绩,记理综成绩X,文综成绩为Y,|X-Y|为Z,将Z值分组统计制成下表,并将其中女生的Z值分布情况制成频率分布直方图
值分布情况制成频率分布直方图(如图所示).
分组[0,20)[20,40)[40,60}[60,80)[80,100)[100,120)[120,140)
频数418426648202
(Ⅰ)若已知直方图中[60,80)频数为25,试分别估计全体学生中,Z∈[0,20)的男、女生人数;
(Ⅱ)记Z的平均数为$\overline{Z}$,如果$\overline{Z}$>60称为整体具有学科学习倾向,试估计高一年段女生的$\overline{Z}$值(同一组中的数据用该组区间中点值作代表),并判断高一年段女生是否整体具有显著学科学习倾向.

查看答案和解析>>

同步练习册答案