精英家教网 > 高中数学 > 题目详情
12.已知p:m2-3m+2>0;q:“x2-2x≤0”是“x2-2mx-3m2≤0(m>0)”的充分不必要条件,若p∧q为真,求实数m的取值范围.

分析 利用一元二次不等式的解法分别化简:命题p与q,再利用充分不必要条件即可得出.

解答 解:p:m2-3m+2>0,解得m≥2或m≤1;
q:x2-2x≤0,解得0≤x≤2.x2-2mx-3m2≤0(m>0),解得:-m≤x≤3m.
∵“x2-2x≤0”是“x2-2mx-3m2≤0(m>0)”的充分不必要条件,∴$\left\{\begin{array}{l}{-m≤0}\\{2≤3m}\end{array}\right.$,m>0,解得m≥$\frac{2}{3}$.
∵p∧q为真,∴p与q都为真命题.
∴$\left\{\begin{array}{l}{m≥2或m≤1}\\{m≥\frac{2}{3}}\end{array}\right.$,解得$\frac{2}{3}≤m≤1$,或m≥2.
∴实数m的取值范围$\frac{2}{3}≤m≤1$,或m≥2.

点评 本题考查了一元二次不等式的解法、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(α)=$\frac{sin(α-π)cos(\frac{3π}{2}+α)tan(-α-π)}{sin(5π+α)ta{n}^{2}(-α-2π)}$
(1)化简f(α); 
(2)若α是第三象限角,且cos($α+\frac{π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若$α=\frac{2015}{3}π$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=1,an+1=2n
(1)证明:数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列,并求出{an}的通项公式;
(2)若cn=n•an,bn=$\frac{(n+2)•{2}^{n-1}}{{c}_{n}•{c}_{n+1}}$的前n项和为Sn,求证:$\frac{3}{4}$≤Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的首项a1=$\frac{3}{5}$,且an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n∈N
(1)求证:数列{$\frac{1}{{a}_{n}}$-1}是等比数列:
(2)令bn=$\frac{1}{{a}_{n}}$-1,试求数列{n•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若实数x,y满足$\sqrt{{x}^{2}+(y+3)^{2}}$+$\sqrt{{x}^{2}+(y-3)^{2}}$=10,则t=$\frac{x}{4}$+$\frac{y}{5}$的最小值为-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a>b>c,且a+b+c=0,则下列不等式中正确的是(  )
A.a2>b2>c2B.ac>bcC.ab>acD.a|b|>c|b|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某外语组有9人,其中7人会英语,4人会日语,从中选出英语和日语的各一人,会有多少种不同选法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sin(π+α)=-$\frac{3}{5}$.且α是第二象限角,tan($\frac{3π}{2}$+θ)=-2,且θ是第三象限的角,求sin(α-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中满足$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}({x_1}≠{x_2})$的是(  )
A.f(x)=ax+bB.f(x)=xαC.f(x)=logax(a>0,a≠1)D.f(x)=x2+ax+b

查看答案和解析>>

同步练习册答案