精英家教网 > 高中数学 > 题目详情
10.已知集合M={y|y=2x},N={x|y=lg(x-x2),则M∩N为(  )
A.(0,1)B.(1,2)C.(0,+∞)D.[1,+∞)

分析 分别化简集合M,N,再利用交集的运算性质即可得出.

解答 解:集合M={y|y=2x}=(0,+∞),
由x-x2>0,解得0<x<1.
∴N={x|y=lg(x-x2)=(0,1),
则M∩N=(0,1).
故选:A.

点评 本题考查了函数的性质、不等式的解法、集合的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的首项a1=$\frac{3}{5}$,且an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n∈N
(1)求证:数列{$\frac{1}{{a}_{n}}$-1}是等比数列:
(2)令bn=$\frac{1}{{a}_{n}}$-1,试求数列{n•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sin(π+α)=-$\frac{3}{5}$.且α是第二象限角,tan($\frac{3π}{2}$+θ)=-2,且θ是第三象限的角,求sin(α-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(2x)=log4$\sqrt{\frac{10x-1}{3}}$,则f(5)的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合A={x|y=$\frac{1}{x-1}$+ln(x+3)},B={y|y=lg(2x-x2)},则A∩(∁RB)=(0,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{6}$,则AA1与平面AB1C1所成的角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中满足$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}({x_1}≠{x_2})$的是(  )
A.f(x)=ax+bB.f(x)=xαC.f(x)=logax(a>0,a≠1)D.f(x)=x2+ax+b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,BC是半圆O的直径,AD⊥BC,垂足为D,$\widehat{AB}=\widehat{AF}$,BF与AD、AO分别交于点E、G.
(1)证明:∠DAO=∠FBC;
(2)证明:AE=BE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O是AE的中点,以AE为折痕向上折起,使D为D′,且D′B=D′C.

(Ⅰ)求证:平面D′AE⊥平面ABCE;
(Ⅱ)求CD′与平面ABD′所成角的正弦值.

查看答案和解析>>

同步练习册答案