精英家教网 > 高中数学 > 题目详情
4.如图,已知点P是圆锥母线SA的中点,Q是底面圆周上的点,M是线段PQ的中点,当点Q在圆周上运动一周时,点M的轨迹是(  )
A.线段B.C.椭圆D.抛物线

分析 设底面圆的圆心为O,连接OP,取OP的中点O′,连接OQ,O′M,则O′M=$\frac{1}{2}$OQ,即可得到点M的轨迹.

解答 解:设底面圆的圆心为O,连接OP,取OP的中点O′,
连接OQ,O′M,则O′M=$\frac{1}{2}$OQ,
∴点M的轨迹是以O′为圆心,$\frac{1}{2}$OQ为半径的圆,
故选:B.

点评 本题考查轨迹问题,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知集合P={x|x=k+$\frac{1}{2}$,k∈z},Q={x|x=$\frac{k}{2}$,k∈z},记原命题:“x∈P,则x∈Q”.那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知椭圆C过点(0,2),其焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0).
(1)求椭圆C的标准方程;
(2)已知点P在椭圆C上,且PF1=4,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若数列bn=$\frac{n-2}{{2}^{n}}$,如果对任意的n∈N*,都有$\frac{7}{8}$+bn≤t2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p≠0)的焦点F在直线2x+y-2=0上.
(1)求抛物线C的方程;
(2)已知点P是抛物线C上异于坐标原点O的任意一点,抛物线在点P处的切线分别与x轴、y轴交于点B,E,设$\overrightarrow{PE}$=λ$\overrightarrow{PB}$,求证:λ为定值;
(3)在(2)的条件下,直线PF与抛物线C交于另一点A,请问:△PAB的面积是否存在最小值?若存在,请求出最小值及此时点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线y=kx-3与圆x2+y2+2x-4y-4=0相交且经过圆心,则k=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:y=x+b,圆C:x2+y2+2ax-2ay+2a2-4a=0(a>0).
(1)当b=4时,求直线l被圆C所截得的弦长的最大值;
(2)当b=1时,是否存在a,使得l与圆C交于A、B两点,且满足$\overrightarrow{OA}•\overrightarrow{OB}$=1?若存在,求出a值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆F1:(x+1)2+y2=r2与F2:(x-1)2+y2=(4-r)2(0<r<4)的公共点的轨迹为曲线E
(Ⅰ)求E的方程;
(Ⅱ)如图,动直线l:y=kx+m与椭圆E有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知如图平行四边形ABCD中,点E是CD的中点,$\overrightarrow{BE}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{CD}$,$\overrightarrow{BD}$(写出解题过程)

查看答案和解析>>

同步练习册答案